MATLAB/Simulink STUDY AND IMPLEMETATION OF FAULT IDENTIFICATION OF EHV LINES USING WAVELET TRANSFORM BASED FLC

Authors

  • Balamurali V Dept. of EEE, Karpagam Academy of Higher Education,Coimbatore, India. Author
  • Dr. K. Balachander Dept. of EEE, Karpagam Academy of Higher Education,Coimbatore, India Author

DOI:

https://doi.org/10.61841/wape3j22

Keywords:

Faulty, FLC, MATLAB, Wavelet.

Abstract

 An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this work. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multi resolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Fuzzy Logic Controller (FLC) and DWT. The results prove that the proposed method is an effective and efficient one in obtaining the accurate result wit.hin short duration of time. Simulation of the power system is carried out MATLAB/Simulink 

Downloads

Download data is not yet available.

References

1. Abdollahi,A.,SeyedtabaiiS.,2010.Transmissionlinefaultlocationestimationbyfourier&wavelettransformsusingA

NN.IEEEConf.Publ.(June),573–578.

2. AbdulwahidSalman,Muntaser,MuhammadAli,Suhail,2009.ANNbaseddetectionandlocationofseverethreephaset

riponthetransmissionlinesofanuncontrolledpowersystem.AnbarJ.Eng.Sci.,36–48.

3. AliRana,Shahzad,Ahmad,Aziz,NoorullahQuadri,Mohammad,2014.Faultsdetectionandclassificationonlongtrans

missionlineusingwaveletanalysis.Int.J.Res.Eng.Adv.Technol.2(June–July(3)),1–6.

4. Bangarraju,K.G.V.S.,Murthy,V.V.N.,2013.Identificationandclassificationoftransmissionlinefaultsusingwavelet

analysis.ITSITrans.Electr.Electron.Eng.1(1),117–122.

5. Beg,M.A.,Bundhe,N.G.,Paraskar,S.R.,2013.Classificationoffaultson400kvtransmissionline.Int.J.Sci.Spiritual.B

us.Technol.1(February(2)),71–75.

6. Bouthiba,Tahar,2004.FaultlocationinEHVlinesusingartificialneuralnetworks.Int.J.Appl.Math.Comput.Sci.14(1)

,69–78.Cecati,Carlo,Razi,Kaveh,2012.Fuzzy-logic-

7. basedhighaccuratefaultclassificationofsingleanddouble-ircuitpowertransmissionlines.IEEEConf.Publ.,883–889.

8. Cheong,W.J.,Agganval,R.K.,2004.Anovelfaultlocationstechniquebasedoncurrentsignalsonlyforthyristorcontoll

edseriescompensatedtransmissionlinesusingwaveletanalysis,andselforganizingmapneuralnetworks.IETConf.Publ.1,224–227.

9. Costa,F.B.,Silva,K.M.,Souza,B.A.,Dantas,K.M.C.,Brito,N.S.D.,2006.Amethodforfaultclassificationintransmiss

ionlinesbasedonANNandwaveletcoefficientsenergy.IEEEConf.Publ.(July),3700–

3705.Costa,F.B.,Souza,B.A.,Brito,N.S.D.,2009.

10. Awaveletbasedmethodfordetectionandclassificationofsingleandcrosscountryfaultsintransmissionlines.In:Interna

tionalConferenceonPowerSystemsTransients,June,pp.1–8.

11. Costa,F.B.,Souza,B.A.,Brito,N.S.D.,2012.Realtimeclassificationoftransmissionlinefaultsbasedonmaximaloverlapdiscretewavelettransform.TransmissionandDi

stributionConferenceandExpositionIEEE/PES1,1–8.

12. Dalstein,Thomas,Kulicke,Bemd,1995.Neuralnetworkapproachtofaultclassificationforhighspeedprotectiverelayi

ng.IEEETrans.PowerDeliv.10(April(2)),1002–1011.

13. Das,Biswarup,VittalReddy,J.,2005.Fuzzy-logicbasedfaultclassificationschemefordigitaldistanceprotection.IEEETrans.PowerDeliv.20(April(2)),609–616.

14. Dash,P.K.,Pradhan,A.K.,Panda,G.,2000.Anovelfuzzyneuralnetworkbaseddistancerelayingscheme.IEEETrans.P

owerDeliv.15(July(3)),902–907.

15. DileepKumar,A.,RaghunathSagar,S.,2014.Discriminationoffaultsandtheirlocationidentificationonahighvoltaget

ransmissionlinesusingthediscretewavelettransform.Int.J.Educ.Appl.Res.4(January–June(1)),107–111.

16. ana,Soumyadip,Nath,Sudipta,Dasgupta,Aritra,2012.Transmissionlinefaultclassificationbasedonwaveletentropy

andneuralnetwork.Int.J.Electr.Eng.Technol.3(July–September(2)),94–102.

17. Joseph, T., Varghese, H. T., Panicker, C. Y., Thiemann, T., Viswanathan, K., Van Alsenoy, C., &

Manojkumar, T. K. (2014). Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis,

HOMO and LUMO analysis of 2, 4-bis (2-methoxyphenyl)-1-phenylanthracene-9, 10-dione by ab initio HF and density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117,

413-421.

18. Kumar, M. S. R., Amudha, A., & Rajeev, R. (2016). Optimization For A Novel Single Switch Resonant Power

Converter Using Ga To Improve Mppt Efficiency Of Pv Applications. International Journal of Applied

Engineering Research, 11(9), 6485-6488.

19. Sridhar, K. P., Baskar, S., Shakeel, P. M., & Dhulipala, V. S. (2019). Developing brain abnormality recognize

system using multi-objective pattern producing neural network. Journal of Ambient Intelligence and

Humanized Computing, 10(8), 3287-3295.

20. Balachander Kalappan, D., & Ponnusamy, V. (2013). Optimization of Cost of Energy of Real Time Renewable

Energy System Feeding Commercial Load Case Study: A Textile Show Room in Coimbatore, India. Life

Science Journal, 10(7s).

21. Balachander, K., & Vijayakumar, P. (2012). Optimization, simulation and modeling of renewable electric

energy system with HOMER. International Journal of Applied Engineering Research, 7(3), 247-256.

22. Sakthivel, N. R., Nair, B. B., & Sugumaran, V. (2012). Soft computing approach to fault diagnosis of

centrifugal pump. Applied Soft Computing, 12(5), 1574-1581.

23. Manikandan, V., Shanmugasundaram, K., Shanmugan, S., Janarthanan, B., & Chandrasekaran, J. (2013). Wick

type solar stills: A review. Renewable and sustainable energy reviews, 20, 322-335.

24. Baskar, S., Periyanayagi, S., Shakeel, P. M., & Dhulipala, V. S. (2019). An energy persistent range-dependent

regulated transmission communication model for vehicular network applications. Computer Networks, 152,

144-153.

25. Sivakumar, D., Amudha, A., Balachander, K., Siva Ramkumar, M. 2019, Implementation of harmonic

mitigation of grid connected modified MLI for variable-speed wind energy conversion system, Mathematical

and Computational Forestry and Natural-Resource Sciences, 11(1), pp. 223-230.

26. Sankar, N.A., Balachander, K., Amudha, A., Divyapriya, S., Siva Ramkumar, M. 2019, Compensation of

voltage variations in distribution system during fault condition by using separate energy storage device based

DVR, Mathematical and Computational Forestry and Natural-Resource Sciences, 11(1), pp. 1-256.

27. Balachander, K. 2019, Design and hardware implementation of portable generator using TEG, International

Journal of Innovative Technology and Exploring Engineering, 8(10), pp. 843-846.

28. Balachander, K., Amudha, A. 2019, Energy saving measures in textile mill, International Journal of Innovative

Technology and Exploring Engineering, 8(8), pp. 2026-2032.

29. Balachander, K., Amudha, A. 2019, Energy economy recommendations in textile mill, International Journal of

Engineering and Advanced Technology, 8(4), pp. 168-176.

30. Kalaivani, M.N., Balachander, K. 2019, A performance analysis of the doubly-fed induction generator under

unbalanced grid voltage conditions, Journal of Advanced Research in Dynamical and Control Systems, 11(3

Special Issue), pp. 1073-1083.

Downloads

Published

31.10.2019

How to Cite

V, B., & Balachander, K. (2019). MATLAB/Simulink STUDY AND IMPLEMETATION OF FAULT IDENTIFICATION OF EHV LINES USING WAVELET TRANSFORM BASED FLC. International Journal of Psychosocial Rehabilitation, 23(4), 1866-1875. https://doi.org/10.61841/wape3j22