Common Fixed Point Theorems Of Gregus Type For Compatible Mappings In Banach Spaces

Authors

  • Neelmani Gupta Department of Mathematics, Govt. Dungar College, Bikaner (Raj.)-334003 Author

DOI:

https://doi.org/10.61841/v7rcv677

Keywords:

Common fixed point,, compatible mappings,, weakly compatible mappings, best approximant.

Abstract

In this paper, we prove a common fixed point theorem of Gregus type for compatible mappings in Banach space. .Our work generalizes several earlier results on fixed points in this direction.

 

 

Downloads

Download data is not yet available.

References

1. B. Brosowski., “Fixpunktsatze in der approximation-theory”, Mathamatica (Cluj)., 11, (1969), 195.

2. Charbone., “Applications of Fixed Points to Approximation Theory”, Jnanabha., 19, (1989), 63.

3. Carbone., “Applications of fixed point theorem”, Jnanabha., 22, (1992), 85

4. W.J. (Jr.) Dotson., “Fixed point theorems for non expansive mappings on starshaped Subsets of banach spaces”, J. London. Math. Soc., 1 (1972), 408 – 410.

5. Fisher, and S. Sessa., “On a fixed point theorem of Gregus”, Internet. J. Math. and Math. Sci., 9, (1986), 23.

6. M. Gregus “A fixed point theorem in Banach space”, Boll. Um. Math. Ital., (5), 17-A, (1980), 198.

7. T.L. Hicks, and M.D. Humphries, “A note on fixed point theorem”, J. Approx. Theory, 34, (1986), 771.

8. Jungck, “Compatible mappings of Fisher and Sessa”, Internat, J. Math. and Math., Sci., 9, (1986), 771.

9. G. Jungck, “On a fixed point theorem of Fisher and Sessa, Internal, J. Math and Math., Sci., (1990), 497.

10. G. Jungck and B.E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math.,

29(3) (1998), 227 – 238.

11. G. Meinardus., “Invariagebeilinearen approximation”, Arch. Rational. Mech. Anal. 14 (1963), 301.303.

12. R.N. Mukherjee, and V. Verma, “A note on a fixed point theorem of Gregus, Math. Japonica, 33, (1988), 745.

13. H.K. Pathak, Y.J. Cho, and S.M. Kang, “An application of fixed point theorems, Internat, J. Math and Math., Sci., 21, (1998), 467.

14. S.A. Sahab, M.S. Khan, and S. Sess, “A result in best approximation theory”, J. Approx. Theory, 55, (1988), 349.

15. S. Sessa., “On a weak commutativity conditions in fixed point consideration, Publ. Inst. Math. 46, (1982), 149.

16. Sushil Sharma, and Bhavna Deshpande., “Fixed point theorem and its application to best approximation theory”, Bull. Cal, Soc., 93, (2) (2001), 155-166.

17. Sushil Sharma and Bhavana Deshpande., “Fixed point theorem for weakly compatible mappings and its application to best approximation theory”, Journal of the Indian Math. Soc., Vol. 69, Nos. 1-4 (2002), 161-171.

18. M.L. Singh., “Application of fixed points to approximation theory”, Proc. Approximation Theory and Applications., Pitman, London 198. (1985).

19. S.P. Singh., “An applicationof a fixed point theorem to approximation theory, J. Approx. Theory., 25, 89 (1979).

20. P.V. Subrahmanyam., “An application of a fixed point theorem to best approximations”, J. Approximation Theory., 20, 165 (1977).

Downloads

Published

28.02.2009

How to Cite

Gupta, N. (2009). Common Fixed Point Theorems Of Gregus Type For Compatible Mappings In Banach Spaces. International Journal of Psychosocial Rehabilitation, 13(No. 1), 140-146. https://doi.org/10.61841/v7rcv677