Green synthesis Quantum Dots (GQD) from Coconut Husk(Cocos nucifera L)the Evaluation for Antibacterial& Cytological Activity
DOI:
https://doi.org/10.61841/b5r2v491Keywords:
UV- spectroscopy-Ray Diffraction Analysis (XRD), Fourier Transform Infrared(FTIR) AntibacteriaAbstract
In this paper, we document the experienced synthesis of graphene quantum dots (GQDs) from coconut husk, normal biomass as a biosynthesis precursor utilizing a single-step hydrothermal carbonization. Structural and morphological characterization of these GQDs was carried out using XRD, Raman, and FTIR. As synthesized at the same time, XRD results established their crystalline nature. Raman spectroscopic measurements exhibited the characteristic "D" (a thousand cm⁻¹) and "G" (3500 cm⁻¹) bands, confirming the formation of low-dimensional graphene nanostructures. Optical properties of these GQDs had been probed, making use of UV-seen spectrometry and room temperature photoluminescence measurements. The UV-vis spectrum confirmed a powerful absorption at 320 nm. These GQDs exhibited fluorescence regularly at 440 nm when excited at one-of-a-kind wavelengths. The fluorescence of GQDs was observed to be sensitive to pH linearly over the pH range of four to 12, which may also be exploited for pH sensor purposes. FTIR spectroscopy has proven the presence of hydroxyl and carboxyl practical moieties on the surface of the GQDs, which play a significant position in surface passivation leading to extra steady nanoparticle dispersions. Coconut husk extract-Graphene quantum dots confirmed the greatest antimicrobial undertaking towards several bacteria species akin to Pseudomonas aeruginosa, Streptococcus mutans, Streptococcus aureus, & E. coli. Established on the findings of the learn, coconut husk might be exploited in developing talents in bioactive pharmaceutical medicines for mighty therapy of cancer.
Downloads
References
1. P.-C. Hsu, Z.-Y. Shih, C.-H. Lee, and H.-T. Chang, Green. Chem. 14, 917 (2012).
2. H. Li, J. Zhai, J. Tian, Y. Luo, and X. Sun, Biosens. Bioelectron. 26, 4656 (2011).
3. F. Li, F. Tian, C. Liu, Z. Wang, Z. Du, R. Li, and L. Zhang, RSC Advances 5, 8389 (2015).
4. P. Aloukos, I. Papagiannouli, A. B. Bourlinos, R. Zboril, and S. Couris, Opt. Express 22, 12013 (2014).
5. X. Guo, C.-F. Wang, Z.-Y. Yu, L. Chen, and S. Chen, Chem. Commun.48, 2692 (2012).
6. S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, Chem. Commun. 48, 8835 (2012).
7. K. M. Tripathi, A. K. Sonker, S. K. Sonkar, and S. Sarkar, RSC Advances 4, 30100 (2014).
8. A. Mewada, S. Pandey, M. Thakur, D. Jadhav, and M. Sharon, J. Mater. Chem. B 2, 698 (2014).
9. I. L. Christensen, Y.-P. Sun, and P. Juzenas, J. Biomed. Nanotechnoogyl. 7, 667 (2011).
10. S. Erica, A. Daniel, and A. Silvana, Oxidative Stress: Diagnostics (2010)
11. Prevention and Therapy, American Chemical Society (2011).
12. P. Kovacic and R. Somanathan, Humana Press, (2013).
13. R. M. Lucente-Schultz, V. C. Moore, A. D. Leonard, B. K. Price, D. V. Kosynkin, M. Lu, R. Partha, J. L.
Conyers, and J. M. Tour, J. Am. Chem. Soc.131, 3934 (2009).
14. J. Tam, J. Liu, and Z. Yao, RSC Advances 3, 4622 (2013).
15. Y. Qiu, Z. Wang, A. C. E. Owens, I. Kulaots, Y. Chen, A. B. Kane, and R. H. Hurt, Nanoscale 6, 11744 (2014).
16. P. Huang, J. Lin, X. Wang, Z. Wang, C. Zhang, M. He, K. Wang, F. Chen, Z. Li, G. Shen, D. Cui, and X. Chen,
Adv. Mater. 24, 5104 (2012).
17. S. Han, H. Zhang, Y. Xie, L. Liu, C. Shan, X. Li, W. Liu, and Y. Tang, Appl. Surf. Sci. 328, 368 (2015).
18. G. Gedda, S. Pandey, M. L. Bhaisare, and H.-F. Wu, RSC Advances 4, 38027 (2014).
19. J. Choi, V. Reipa, V. M. Hitchins, P. L. Goering, and R. A. Malinauskas, Toxicol. Sci. 123, 133 (2011).
20. Y. Wang and A. Hu, J. Mater. Chem. C 2, 6921 (2014).
21. Z. Yang, Z. Li, M. Xu, Y. Ma, J. Zhang, Y. Su, F. Gao, H. Wei, and L. Zhang, Nano-Micro Lett. 5, 247 (2013).
22. B. De and N. Karak, RSC Advances 3, 8286 (2013).
23. L. Wu, X. Cai, K. Nelson, W. Xing, J. Xia, R. Zhang, A. Stacy, M. Luderer, G. Lanza, L. Wang, B. Shen, and
D. Pan, Nano. Res. 6, 312 (2013).
24. C. Jiang, H. Wu, X. Song, X. Ma, J. Wang, and M. Tan, Talanta 127, 68 (2014).
25. M. P. Sk, A. Jaiswal, A. Paul, S. S. Ghosh, and A. Chattopadhyay, Sci. Rep. 2, 383 (2012).
26. J. Wang, C.-F. Wang, and S. Chen, Angew. Chem. Int. Edit. 51, 9297 (2012).
Downloads
Published
Issue
Section
License
Copyright (c) 2020 AUTHOR

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.