ADAPTIVE ESTIMATION ALGORITHMS FOR THE STATE OF NONLINEAR DYNAMIC SYSTEMS

Authors

  • O.O. Zaripov Doctor of technical sciences, professor, Tashkent State Technical University after Islam Karimov, Tashkent, Uzbekistan Author
  • D.A. Akhmedov Researcher in Tashkent State Technical University after Islam Karimov, Tashkent, Uzbekistan Author
  • U.F. Mamirov Doctor of Philosophy in technical sciences, associate professor Tashkent State Technical University after Islam Karimov, Tashkent, Uzbekistan Author

DOI:

https://doi.org/10.61841/9aj79j56

Keywords:

nonlinear dynamic system, adaptive state estimation, adaptive identification of parameters, adaptive observer

Abstract

The article discusses the construction of adaptive state estimation algorithms for nonlinear dynamic systems. The tasks of adaptive state estimation, adaptive identification of parameters, and constructing an adaptive observer are considered. The conditions of global stability of an adaptive observer are given. The above algorithms for adaptive state estimation, adaptive parameter identification, and the construction of an adaptive observer of a nonlinear dynamic system make it possible to increase the accuracy of estimating the state vector and thereby the quality indicators of control processes.

Downloads

Download data is not yet available.

References

[1] Kuznetsov E.S. Management of technical systems: Textbook / MADI (TU) - M.: 2001. - 262 p.

[2] Glovan A.A. Algorithmic control of the Kalman filter. // Automation and telemechanics, 1993, No. 7. –C.173-185.

[3] Semoushin I.V., Yurjev A., Nikonorov A. Built-in selection of the best adaptation mechanism for INS error model identification // ECCOMAS 2004, Jyvaskyla, Finland, 2004, part 2. - p. 427-427.

[4] Murgu A. Optimization of Telecommunication Networks. - Lecture Notes, University of Jyvaa, 2001. - 432 p.

[5] Gustafsson, F. Adaptive filtering and change detection. - John Wiley & Sons, LTD, 2000. - 500 p.

[6] Automated process control / Ed. Yakovleva V.B. - L.: Publishing House of Leningrad University, 1988.-224 p.

[7] Smyshlyaev P.P., Lykosov V.M., Osipkov L.P. Process management. - L.: Publishing house of Leningrad University, 1989. - 284 p.

[8] Fradkov A.L. Adaptive management in complex systems. M.: Nauka, 1990.

[9] Alexandrov A.G. Optimal and adaptive systems. - M., 2003. - 278 s.

[10] Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal management. -M.: Fizmatlit, 2005.-384 p.

[11] Egupov N.D., Pupkov K.A. Methods of the classical and modern theory of automatic control. The textbook in 5 volumes. - M.: Publishing House of MSTU named after N.E. Bauman, 2004.

[12] Antonov V., Terekhov V., Tyukin I. Adaptive control in technical systems. Publishing House: St. Petersburg University, 2001. - 244 p.

[13] Miroshnik I.V., Nikiforov V.O., Fradkov A.L. Non-linear and adaptive control of complex dynamic systems. –SPb.: Nauka, 2000. –549 s.

[14] Shakhtarin B.I. Signal Detection. Tutorial. –M.: Helios ARV, 2006. -526 p.

[15] Bogdanovich V.A., Vostretsov A.G. Theory of Sustainable Detection of Distinguishing and Signal Evaluation, 2nd ed. Publisher: Fizmatlit, 2004. -320s.

[16] Rozov A.K. Detection, classification, and evaluation of signals. Publishing House: Polytechnic, Publishing House, 2000. - 248 p.

[17] Peltzerger S.B. Algorithmic support of estimation processes in dynamic systems under conditions of uncertainty. -M.: Nauka, 2004.-116 p.

[18] Ogarkov M.A. Methods of statistical estimation of random process parameters. –M.: Energoatomizdat, 1990. -208 p.

[19] Igamberdiev H.Z., Yusupbekov A.N., Zaripov O.O. Regular methods for evaluating and managing dynamic objects in the face of uncertainty. - T.: TashGTU, 2012.- 320s.

[20] Igamberdiyev H. Z., Yusupbekov A. N., Zaripov O. O., Sevinov J. U., Algorithms of adaptive identification of uncertain operated objects in dynamical models // Procedia Computer Science. Volume 120, 2017, Pages 854-861. https://doi.org/10.1016/j.procs.2017.11.318.

[21] Yusupbekov N.R., Igamberdiev H.Z., Mamirov U.F., Algorithms of sustainable estimation of unknown input signals in control systems, in Autom. Mob. Rob. Intell. Syst. 2018, Vol. 12, Issue 4, pp. 83–86. https://doi.org/10.14313/JAMRIS_4-2018/29.

[22] Widrow B., Walach E. Adaptive Inverse Control. A Signal Processing Approach. - IEEE Press, 2008. – 521 p.

[23] Sinitsyn I.N. Kalman and Pugachev filters. –M.: Logos, 2006. - 640 p.

[24] Kolos M.V., Kolos I.V. Optimal linear filtration methods / Ed. V.A. Morozova. –M.: Moscow State University Publishing House, 2000. - 102 p.

[25] Javed Ali, Pramod K, SH Ansari. "Near-Infrared Spectroscopy for Nondestructive Evaluation of Tablets." Systematic Reviews in Pharmacy 1.1 (2010), 17-23. Print. doi:10.4103/0975-8453.59508

Downloads

Published

31.05.2020

How to Cite

Zaripov, O., Akhmedov, D., & Mamirov, U. (2020). ADAPTIVE ESTIMATION ALGORITHMS FOR THE STATE OF NONLINEAR DYNAMIC SYSTEMS. International Journal of Psychosocial Rehabilitation, 24(3), 247-253. https://doi.org/10.61841/9aj79j56