Bioaccumulation of cadmium and quantitative characterization of proteins ofSaccharomyces cerevisiae

Authors

  • Sarla Kumari Department of Chemistry, S P C Government College, Ajmer 305009 Rajasthan, India Author
  • Chandra Mohan SMAS, K R Mangalam University, Gurugram, Sohna, 122103, India Author
  • Vinod Kumar SMAS, K R Mangalam University, Gurugram, Sohna, 122103, India Author

DOI:

https://doi.org/10.61841/hhqhj243

Keywords:

Bioaccumulation, cadmium, Saccharomyces cerevisiae, proteins

Abstract

Bioaccumulation using microbes is an efficient strategy for heavy metal removal due to its low cost, high efficiency, and ecofriendly nature. Recent inventions have been made to understand metal-microbe interaction and their application for metal accumulation. Yeast, being a typical eukaryote, has many essential features similar to those of higher eukaryotes and can be used to investigate various aspects of their cell biology. Saccharomyces cerevisiae can be used as a model system because of easy cultivation using normal media. It is therefore planned to investigate the bioaccumulation of cadmium by S. cerevisiae. Molecules that participate in the binding of metal ions have been identified and found in several species of yeast and other fungi. Proteins are able to transport a charged heavy metal ion across biological membranes. Metallothioneins, like proteins, are important mediators that help in metal uptake and hence accumulation, especially for cadmium. This paper attempts to present the correlation between cadmium concentrations in the environment and accumulation by S. cerevisiae, along with the involvement of metal-binding proteins. 

Downloads

Download data is not yet available.

References

1. Martins B.L., Cruz C.C.V., Luna A.S. et al., Biochem. Eng. J., 2006, 27(3), 310-14.

2. Turgay T. et al., Biosorption of Cadmium Ions from Aqueous Solution onto Non-living Lichen Ramalina Fraxinea Biomass, Clean: Soil, Air, Water, 2009, 37, 249-255.

3. Zouboulis A.I., Loukidou M.X., Matis K.A., Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils, Process Biochem., 2004, 39, 909–916.

4. Iyer A., Mody K., Jha B.K., Biosorption of heavy metals by a marine bacterium, Marine Poll. Bull., 2005, 50, 340–343.

5. Kim S.U., Cheong Y.H., Seo D.C., Hur J.S., Heo J.S., Cho J.S., Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.), Water Sci. Technol., 2007, 55, 105–111.

6. Alluri H.K., Ronda S.R. et al., African J. of Biotechnol., 2007, 6(25), 2924-931.

7. Ramasamy K., Kamaludeen S., and Parwin B., “Bioremediation of Metals: Microbial Processes and Techniques,” in S. N. Singh & R. D. Tripathi (eds.) Environmental Bioremediation Technologies, Springer Publication, NY, 2006, 173-187.

8. Bruins R.M., Kapil S., and Oehme W.F., “Microbial resistance to metals in the environment,” Ecotoxicological and Environmental Safety, 2000, 45(2), 198-207.

9. Sharma P.K., Balkwill D. L., Frenkel A., and Vairavmurthy M.A., A new Klebsiella plantticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide, Applied and Environmental Microbiology, 2000, 66 (7), 3083-3087.

10. Wang C.L., Ozuna S.C., Clark D.S., Keasling J.D., „A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd2+ tolerance and precipitation,‟ Biotechnology Lett, 2002, 24 (8), 637- 641.

11. Gavrilescu M., Removal of heavy metals from the environment by biosorption,” Engneerng Life Science, 2004, 4, 219-232.

12. Brady D. and Duncan J.R., Enzyme Microbiol., 1994a, 16, 633-8.

13. Goksungur Y., Uren S., and Guvenc U., Bioresour. Technol., 2005, 96, 103-9.

14. Kapoor A. and Viraraghavan T., Bioresour. Technol., 1995, 53, 195-206.

15. Peregol P. and Howell S.B., Toxicol. Appl. Pharmac., 1997, 147, 312-8.

16. Brady D. and Duncan J.R., Appl. Microbiol. Biotechnol., 1994, 41, 149-154.

17. Wang J. and Chen C., Biotechnology Advances, 2006, 24, 427-51.

18. Blackwell K.J., Singleton I., and Tobin J.M., Appl. Microbiol. Biotechnol., 1995, 43, 579-84.

19. Avery S.V. and Tobin J.M., Appl. Environ. Microbiol., 1992, 58, 3883-9.

20. Soares E.V., Duarte A.P.R.S. et al., Appl. Microbiol. Biotechnol., 2002, 58, 836-41.

21. Huang C.P., Huang C.P., and Mbrehart A.L., Water Res., 1990, 24, 433-439.

22. Vanaja M., Charyulu NVN, and Rao KVN, Proc. Ind. Natl. Sci. Acad., 1989, 55, 489-94.

23. Steward F.C. and Barber J.T., Amer. J.Bot. 1965, 52(2), 155-164.

24. Steward F.C. and Barber J.T., Ann. N. Y. Acad. Sci., 1964, 121(2), 525-531.

25. Bharti N. and Singh R.P., Phytochem., 1993, 33, 531-534.

26. Lodish H.F. and Rothman J.E., Sci. American, 1979, 240, 38-53.

27. Walker N.A., Enc. of Plant Physiol., New-Series, Springer, Verlog, Berlin Heidelberg, New York, 1976, 2, 3-11.

28. Singer S.J. and Nichalson G.L., Science, 1972, 175,720-731.

29. Sood I.S., Sindhu R.S., and Sharma K.K., Poll. Res., 1994, 13(4), 331-343.

30. Sood I.S., Sindhu R.S. et al., Perpective in Pteridology, Present and Future, 1992, 14, 361-64.

31. Bhardwaj S., Ph.D. Thesis submitted to M.D.S. University, Ajmer (Raj.), 1992.

32. Blundell T.L. and Jenkins I.A., Chemical Soci. Rev., 1977, 6(2), 139-71.

33. Leeman S.G., Keung W.M., and Riordan J.F., J. Inorg. Biochem. USA, 1986, 26(2), 93-106.

34. Markovac J. and Goldstein G.W., C. Nature, 1988, 334, 71-73.

35. Kumar V, Sharma AK, Rajput SK, Pal M, Dhiman N. Evaluation of phytochemical, toxicological, and pharmacological profiles of Eulaliopsisbinata leaf extracts. Toxicol Res. 2018; 7: 454-464

36. Kumar V., Pal M., and Dhiman, N., Determination of sun protection factor in different extract of Eulaliopsisbinata, Plant Archives, 2019; 19(2), 185-187

37. Kumar V, Mohan C, and Kumari S, “Synthesis, characterization, and antibacterial activity of the Schiff bases derived from thiosemicarbazide, 2-acetyl thiophene, and thiophene-2 aldehyde." International Research Journal of Pharmacy, 2018, 9(7), pp. 153-158

38. Brierley C.L., J. Geomicrobiol., 1990, 8, 201-223.

39. Baker A.J.M. and Brooks R.R., J. Ecol. and Phytochem.; Biorecovery; 1989, 1, 81.

40. Verma R.S., Rao T.V.G., and Prasad R., Biochem. Biophys. Act; 1984, 778, 289.

41. Lowry O.H., Rosebrough N.J., Farr A.L., and Randall R.J., J. Biol. Chem., 1951, 193, 265.

42. Dewhurst F., J. of Chem. Edu., 1969, 46(12), 864-865.

43. Weber K. and Osborn M., J. Biol. chem., 1969, 244, 4406.

44. Liu X.F., Supek F., Nelson N. et al., J. Biol. Chem., 1997, 272, 11763-11769.

45. Yu J. X., Tong M., Sun X. M., Li B. H., Cystine-modified biomass for Cd(II) and Pb(II) biosorption, J. Hazard. Mater. 2007, 143, 277-284.

46. Li Z.S., Lu Y.P., Zhen R.G. et al., Proc. Natl. Acad. Sci. USA, 1997, 94, 42-47.

47. Li Z.S., Szczypka M., Lu Y.P., Zhen R.G. et al., J. Biol. Chem., 1996, 271, 6509-517.

48. Fashola M., Ngole-Jeme V., and Babalola O., Heavy metal pollution from gold mines: Environmental effects and bacterial strategies for resistance,” International Journal of Environmental Research and Public Health, 13, 1047, 2016.

49. Inouhe M., Sumiyoshi M. et al., Plant Cell Physiol., 1996, 37(3), 341-46.

50. Higham P.D., Sadler J.P., and Scawen D.M., “Cadmium-binding proteins in Pseudomonas putida: pseudothioneins,” Environmental Health Perspective, 65(3), 5-11, 1986.

Downloads

Published

30.04.2020

How to Cite

Kumari, S., Mohan, C., & Kumar, V. (2020). Bioaccumulation of cadmium and quantitative characterization of proteins ofSaccharomyces cerevisiae. International Journal of Psychosocial Rehabilitation, 24(2), 9139-9148. https://doi.org/10.61841/hhqhj243