Decoupling of the Maxwell conditions in as far as possible is examined in Classical Electrodynamics

Authors

  • Raj Kumar Guru Kashi University, Talwandi Sabo Author
  • Vinod Kumar Guru Kashi University, Talwandi Sabo Author

DOI:

https://doi.org/10.61841/dkvycs55

Abstract

In spite of the two clear static endpoints, the magneto-semi static, electro-semi static, and electromagnetic-semi static limits are proven to exist to the extent that the Maxwell conditions are attainable (V c, or L/T c). The first two semi-static endpoints have recently been dubbed Galilean Electromagnetics, while the third has been dubbed the Darwin hypothesis. The vacuum Maxwell conditions are organised by the Rappetti and Rousseaux theory, which gains each of them pretty far using an irritation improvement. To set the circumstances, an adaptation of Jackson's investigation of EM unit frameworks is utilized to determine the dimensionless type of the Maxwell conditions [Jackson, Classical Electrodynamics, Wiley, 1999, third ed.]. The unsettling influence extension finishes the typical condition of the Maxwell conditions to stress the significance of measure conditions. The essential plans of the doable revelations, as well as the additional Coulomb and Biot-Savart standards, are gathered to the furthest degree conceivable. Regardless of the way that the plans are equivalent to static circumstances, the semi-static kinds of Maxwell conditions are recuperated, as indicated by the results. The enlistment length is recovered when the time assistant of the vector potential is held. The current migration will be restored after the current migration has been recovered. Lorenz measure is applied. By many accounts, this cycle resembles Jackson's Darwin surmise allowance [Amer. J. Phys., 70, 917 (2002)]. As far as detectable medium, the semistatic assortments of Maxwell conditions are investigated for their appropriateness.

Downloads

Download data is not yet available.

References

Barnett, S. J. (1915), Phys. Rev. 6, 239.

Carson, J. R. (1927), Bell System Technical Journal 6 (1), 1.

Castellanos, A. (2014), Electrohydrodynamics, Vol. 380 (Springer).

Darwin, C. (1920), Phil. Mag. 39, 537.

De Montigny, M., F. Khanna, and A. Santana (2003), International Journal of Theoretical

Physics 42 (4), 649.

Eichenwald, A. (1903), Ann. Phys. 11, 421.

Eichenwald, A. (1904), Ann. Phys. 13, 919.

Einstein, A., and J. Laub (1908a), Ann. Phys. 26, 232.

Einstein, A., and J. Laub (1908b), Ann. Phys. 26, 445.

Einstein, A., and J. Laub (1908c), Ann. Phys. 26, 541.

Einstein, A., and J. Laub (1908d), Ann. Phys. 26, 532.

Griffiths, D. J. (2005), Introduction to electrodynamics (AAPT).

Haus, H. A., and J. R. Melcher (1989), Electromagnetic fields and energy (Prentice Hall).

Heras, J. A. (2010a), European Journal of Physics 31 (5), 1177.

Heras, J. A. (2010b), American Journal of Physics 78 (10), 1048.

Heras, J. A., and G. Báez (2008), European Journal of Physics 30 (1), 23.

Jackson, J. D. (1975), Classical Electrodynamics, 2nd ed. (Wiley, New York).

Jackson, J. D. (1999), Classical Electrodynamics, 3rd ed. (Wiley, New York).

Jackson, J. D. (2002), American Journal of Physics 70 (9), 917.

Jefimenko, O. D. (1966), Electricity and magnetism (Appleton-Century-Crofts).

Krause, T. B., A. Apte, and P. J. Morrison (2007), Physics of plasmas 14 (10), 102112.

Landau, L., and E. Lifschitz (1959), The Classical Theory of Fields (Pergamon Press,

New York).

Le Bellac, M., and J.-M. Lévy-Leblond (1973), Il Nuovo Cimento B (1971-1996) 14 (2),

217.

Lévy-Leblond, J.-M. (1965), Ann. Inst. H. Poincaré 3, 1.

Manfredi, G. (2013), European Journal of Physics 34 (4), 859.

de Montigny, M., and G. Rousseaux (2007), American Journal of Physics 75 (11), 984.

Montigny, M. d., and G. Rousseaux (2006), European Journal of Physics 27 (4), 755.

Purcell, E. (1965), Electricity and Magnetism, 3rd ed. (Berkeley Physics Course,

Reading, Massachusetts).

Rapetti, F., and G. Rousseaux (2011) (IET 8th International Conference on Computation

in Electromagnetics).

Rapetti, F., and G. Rousseaux (2014), Applied Numerical Mathematics 79, 92.

Roentgen, W. C. (1888), Ann. Phys. 35, 264.

Roentgen, W. C. (1890), Ann. Phys. 40, 93.

Rousseaux, G. (2003), in Annales de la Fondation de Broglie, Vol. 28, pp. 261–270.

Rousseaux, G. (2008), Europhysics Letters (EPL) 84 (2), 20002.

Rousseaux, G. (2013), The European Physical Journal Plus 128 (8), 105207.

Rousseaux, G., and A. Domps (2004), Bulletin de l’Union des Physiciens 863.

Rousseaux, G., R. Kofman, and O. Minazzoli (2008), The European Physical Journal D

49 (2), 249.

Turner, M. M., A. Derzsi, Z. Donkó, D. Eremin, S. J. Kelly, T. Lafleur, and T.

Mussenbrock (2013), Phys. Plasmas20, 013507.

Verboncoeur, J. P., M. V. Alves, V. Vahedi, and C. K. Birdsall (1993), Journal of

Computational Physics 104 (2),

321.

Weber, T. A. (1997), American Journal of Physics 65 (10), 946.

Wilson, H. A. (1905), Phil. Trans. R. Soc. Lond. A 204 (372-386), 121.

Wilson, M., H. A. Wilson, et al. (1913), Proc. R. Soc. Lond. A 89 (608), 99.

Wilson, W., and L. Espenschied (1930), Bell Labs Technical Journal 9 (3), 407.

Woodson, H. H., and J. R. Melcher (1968), Electromechanical dynamics (Wiley).

Yee, K. (1966), IEEE Transactions on Antennas and Propagation 14 (3), 302

Downloads

Published

30.06.2021

How to Cite

Kumar, R., & Kumar, V. (2021). Decoupling of the Maxwell conditions in as far as possible is examined in Classical Electrodynamics. International Journal of Psychosocial Rehabilitation, 25(3), 1305-1320. https://doi.org/10.61841/dkvycs55