Effect of Serum Copper on Circulating Angiogenesis-related Factors in Women withPreeclampsia

Authors

  • Khalid Najm Nadheer Ministry of Health, Al-Muthanna Health Directorate, Department of Technical Affair, Laboratories Division. Author
  • Dr. Afaq Abdul Aziz abdul Hussein Maternity and Children hospital, Samawah, Al-Muthanna, Iraq. MBCHB, DOG Author
  • Hussein Kadhem Al-Hakeim Department of Chemistry, College of Science, University of Kufa, Iraq. Author

DOI:

https://doi.org/10.61841/dcg45c48

Keywords:

Copper, endoglin, preeclampsia, VEGF-A, sVEGF-R1

Abstract

Preeclampsia (PE) is characterized by a series of clinical features such as hypertension and proteinuria associated with endothelial dysfunction and the impairment of placenta vascular endothelial integrity. This study aimed to investigate the effect of serum copper (Cu) level on some angiogenesis-related factors including vascular endothelial growth factor-A (VEGF-A), soluble Fms-like tyrosine kinase-1 (sVEGF-R1), soluble endoglin (sEng) and ceruloplasmin (CP) in Iraqi women with PE and control pregnant women. Therefore, 60 women with PE in addition to 30 healthy pregnant women were enrolled in the study. Serum concentration of sEng, VEGF-A, sVEGF-R1, and Cu in PE group significantly increased (p<0.05) in the PE group compared with that in the control group. Increased production of antiangiogenic factors, soluble VEGF-A and sEng contribute to the pathophysiology of PE, indicating the involvement of these parameters in the angiogenic balance in patients with PE. Tests for between-subject effects showed that the circulating angiogenesis factors and Cu were significantly associated with the presence of PE. Serum Cu level was significantly correlated with VEGF- A and VEGF-R1 levels but not with sEng. Multiple regression analysis revealed that only Cp and BP can significantly predict the complications in women with PE. In conclusion, serum Cu has a role in the angiogenesis in women with PE and may be a new drug target in the prevention or treatment of PE. 

Downloads

Download data is not yet available.

References

[1] N. Al-Jameil, K.F. Aziz, F.M. Khan, H. Tabassum, A brief overview of preeclampsia, J. Clin.

Med. Res. 6 (2014) 1-7.

[2] J. chen, M. Zhong, UH. Yu, Association between interleukiny polymorphisms and risk of

Preeclampsia a population of Chinese pregnant women, Genet. Mol. Res. 2 (2017) 5-16.

[3] J.T. Henderson, J.H. Thompson, B.U. Burda, A. Cantor, Preeclampsia screening: evidence

report and systematic review for the US preventive services task force, JAMA, 317 (2017)

1668-1683.

[4] Sovio U, Gaccioli F, Cook E, Hund M, Charnock-Jones DS, Smith GCS. Prediction of

Preeclampsia Using the Soluble fms-Like Tyrosine Kinase 1 to Placental Growth Factor

Ratio. A Prospective Cohort Study of Unselected Nulliparous Women. Hypertension. 2017;

69(4): 731-738.

[5] M. Furuya, K. Kurasawa, K. Nagahama, K. Kawachi, A. Nozawa, T. Takashi, Disrupted

balance of angiogenic and antiangiogenic signaling in preeclampsia, J. Pregnancy, 20 (2011)

123717.

[6] Jardim LL, Rios DR, Perucci LO, de Sousa LP, Gomes KB, Dusse LM. Is the imbalance

between pro-angiogenic and anti-angiogenic factors associated with preeclampsia? Clinica

Chimica Acta. 2015; 447:34-38.

[7] T. Miyake, K. Kumasawa, N. Sato. T. Takiuchi, H. Nakamura, T. Kimura, Soluble VEGF

receptor-1 (sFLT1) induces non-apoptotic death in overian and colorectal cancer cells, Sci.

Rep., 22 (2016) 6-24853.

[8] Lara E, Acurio J, Leon J, Penny J, Torres-Vergara P, Escudero C. Are the Cognitive

Alterations Present in Children Born From Preeclamptic Pregnancies the Result of Impaired

Angiogenesis? Focus on the Potential Role of the VEGF Family Front Physiol. 2018; 9: 1591.

[9] Roberts, J. M., and Escudero, C. (2012). The placenta in preeclampsia. Pregnancy Hypertens. 2, 72–83.

[10] M. Varejekova, E. Callardo-Vara, M. Vicen, B. Viterova, P. Fikrova, E. Dolezelova, J.

Rathouska, A. Prasnicka, Soluble endoglin modulates the por-inflammatory mediates NF-KB

and IL-6 in cultured human endothelial cells, Life Sci. 175 (2017) 52-60.

[11] A.M. Blazquez-Medela, L. Garcia-Ortiz, M.A. Gomez-Marcos, J.I. Recio-Rodrigues, A.

Sanchez-Rodrigez, J.M. Lopez-Novoa, C. Martinez-Salgado, Increased plasma soluble

endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic

patients, BMC Medicine, 8 (2010) 1-12.

[12] B. Oujo, F. Perez-Barriocanal, C. Bernabeu, J.M. Lopez-Novoa, Membrane and soluble

forms of Endoglin in preeclampsia, Curr. Mol. Med., 13 (2013) 1345-1357.

[13] Xie H, Kang YJ. Role of copper in angiogenesis and its medicinal implications. Curr Med

Chem 2009;16:1304–14.

[14] Ge´rarda C, Bordeleaua LJ, Barraletb J, Doillona CJ. The stimulation of angiogenesis and

collagen deposition by copper. Biomaterials 2010;31: 824–31.

[15] Cabassi, S. M. Binno, S. Tedeschi, G. Graiani, C. Galizia, M. Bianconcini, P. Coghi, F.

Fellini, L. Ruffinil, et al., Myeloperoxidase-Related Chlorination Activity Is Possitively

Associated with Circulating Ceruloplasmin in Chronic Heart Failure Patients: Relationship

with Neurohormonal, Inflammatory, and Nutritional Parameters. Biomed Res Int.,15 (2015)

691693.

[16] Gocmen AY, Sahin E, Semiz E et al. Is elevated serum ceruloplasmin level associated with

increased risk of coronary artery disease? Can J Cardiol 24 (2008) (3):209-12.

[17] Kennedy DJ, Fan Y, Wu Y et al. (2014) Plasma ceruloplasmin, a regulator of nitric oxide

activity, and incident cardiovascular risk in patients with CKD. Clin J Am Soc Nephrol, 9

(3):462-7.

[18] Guller S, Buhimschi CS, Ma YY et al. Placental expression of ceruloplasmin in pregnancies

complicated by severe preeclampsia. Lab Invest 88(2008) (10):1057-67.

[19] Roberts JM, Bodnar LM, Patrick TE, Powers Robert W. The role of obesity in

preeclampsia. Pregnancy Hypertens. 2011; 1(1): 6–16.

[20] HK Al-Hakeim, RAM Ali. Proteinuria as the most relevant parameter affecting Fetuin-A

levels in preeclampsia. Acta Facultatis Medicae Naissensis 2015; 32 (4), 267-277.

[21] Fortner RT, Pekow P, Solomon CG, Markenson G, Chasan-Taber L. Prepregnancy body

mass index, gestational weight gain, and risk of hypertensive pregnancy among Latina

women. Am J Obstetrics Gynecol. 2009;200.

[22] Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: updates in pathogenesis, definitions,

and guidelines. Clin J Am Soc Nephrol. 2016; 11(6): 1102-1113.

[23] SE. Maynard, S. Venkatesha, R. Thadnani, SA. Kanumanch, Soluble Fms-like tyrosine

kinase1 and endothelial dysfunction in the pathogenesis of preeclampsia, Pediatric Res., 57

(2005) 1-7.

[24] C. Bosco, J. G.Montero, R. Gutierrez, M. Parra-Cordero, P. Barja, R. Rodrigo, Oxidative

damage to preeclampsia placenta, immundistochemical expression of VEGF, nitrotyrosin

residues and von Willebrand factor, J Matern Fetal Neonatal Med., 25(2012) 2339-45.

[25] ZK. ZsEngeller, A. Rajakumar, JT. Hunter, S. Salahuddin, S. Rana, IE. Stillman, S. Ananth

Karumanchi, Trophoblast mitochondrial function is impaired in preeclampsia and correlates

negatively with the expression of soluble fms-like tyrosin kinase 1, Pregnancy Hypertens., 6

(2016) 313-319.

[26] Celik H, Avci B, Isik Y. Vascular endothelial growth factor and endothelin-1 levels in normal

pregnant women and pregnant women with preeclampsia. J Obstet Gynecol. 2013; 33(4):355–

358.

[27] Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1

inhibits angiogenesis in preeclampsia. Circulation research. 2004; 95(9):884–891.

[28] Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and

vascular disease. Biochem Pharmacol. 2008; 75(2):346–359.

[29] Tsatsaris V, Goffin F, Munaut C, Brichant JF, Pignon MR, Noel A, Schaaps JP, Cabrol D,

Frankenne F, Foidart JM. Overexpression of the soluble vascular endothelial growth factor

receptor in preeclamptic patients: Pathophysiological consequences. J Clin Endocrinol Metab

2003;88(11):5555-5563

[30] LM. Procopciuc, G. Caracostea, G. Zaharie, F. Stamatian, Maternal/newborn VEGF-C936T

interaction and its influene on the risk, severity and prognosis of preeclampsia, as well as on

the maternal angiogenic profile, J Matern Fetal Neonatal Med., 27 (2014) 1745-60.

[31] Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP,

Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA. Excess placental soluble

fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and

proteinuria in preeclampsia. J Clin Invest 2003;111(5):649–658.

[32] AI. Shchyogolev, EA. Dubova, KA. Pavlova, VM. Lyapin, GT. Sukhikh, Expression of

antiangiogenic factors in the placental structures in preeclampsia, Bull Exp Biol Med., 154

(2012) 287-91.

[33] S. Aref, M. EI. Sherbiny, T. Goda, M. Fouda, H. AI Askalany, D. Abdalla, Soluble

VEGF/sFLt1 ratio is an independent predictor of AML patient outcome, Hematology, 10

(2005) 131-4.

[34] A.Liberis, G. Stanulov, EC. Ali, A. Hassan, A. Pagalos, EN. Kontomanolis, EN.

Preeclampsia and the vascular endothelial growth factor: a new aspect, Clin Exp Obstet

Gynecol., 43 (2016) 9-13.

[35] Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH,

Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW,

Romero R, Sukhatme VP, Letarte M, Karumanchi SA.: Soluble endoglin contributes to the

pathogenesis of preeclampsia. Nat Med 2006; 12: 642–649.

[36] Vinayagam V, Bobby Z, Habeebullah S, Chaturvedula L, Bharadwaj SK. Maternal and

Cord Blood Plasma sEng and TGF-β1 in Patients with Hypertensive Disorders of Pregnancy:

A Pilot Study in a South Indian Population. J Clin Diagn Res. 2017;11(3):QC32-QC34.

[37] A. Khalil, N. Maiz, R. Garcia-Mandujano, M. Elkhouli, KH. Nicolaides, Longitudinal

changes in maternal soluble endoglin and angiopoietin-2 in women at risk for preeclampsia,

Ultrasound Obstet Gynecol., 44 (2014) 402-10.

[38] LO. Perucci, KB. Gormes, LG. Freitas, LC. Godoi, PN. Alpoim, MB. Pinheiro, AS.

Miranda, et al., Soluble endoglin, transforming growth factor-Beta1 and soluble tumor

necrosis factor alpha receptors in different clinical manifestations of preeclampsia, PLOS

One., 9 (2014) e97632.

[39] Levine RJ, Lam C, Qian C, Yu KF, Maynard SE, Sachs BP, Sibai BM, Epstein FH, Romero

R, Thadhani R, Karumanchi SA. Soluble endoglin and other circulating antiangiogenic factors

in preeclampsia. The New England journal of medicine. 2006; 355(10):992–1005.

[40] Ramma W, Buhimschi IA, Zhao G, Dulay AT, Nayeri UA, Buhimschi CS, Ahmed A. The

elevation in circulating anti-angiogenic factors is independent of markers of neutrophil

activation in preeclampsia. Angiogenesis. 2012; 15(3):333–340.

[41] MJ. Bell, JM. Roberts, SA. Founds, A. Jeyabalan, L. Terhorst, YP. Conley, Variation in

endoglin pathway genes is associated with preeclampsia: a case-control candidate gene

association study, BMC Pregnancy Childbirth., 13 (2013) 82.

[42] Maynard SE, Karumanchi SA. Angiogenic Factors and Preeclampsia. Semin Nephrol. 2011; 31(1):

33–46.

[43] H. Aksoy, S. Taysi, Antioxidant potential and transferring ceruloplasmin and lipid

peroxidation levels in women with preeclampsia, J Investig Med., 51 (2003) 7-284.

[44] Bellos I, Papantoniou N, Pergialiotis V. Serum ceruloplasmin levels in preeclampsia: a

meta-analysis. J Maternal-Fetal Neonat Med 2018;31(17):2342-2348.

[45] ME. Demir, T. Uias, MS. Dal, MA. Eren, H. Aydogan, Oxidative stress parameters and

ceruloplasmin levels in patients with severe preeclampsia, Clin Ter., 164 (2013) 7-83.

[46] L. Shakour-shahabi, S. Abasali-Zadeh, N. Rashtchi- Zadeh, Serum level and antioxidant

activity of ceruloplasmin in preeclampsia, Pak J Biol Sci., 13 (2010) 3-621.

[47] S. Guller, CS. Buhimschi, YY. Ma, ST. Huang, Placental epression of ceruloplasmin in

pregnancies complicated by sever preeclampsia, Lab Invest., 88 (2008) 67-1057.

[48] N. Vitorasas, E. Salamalekis, N. Dalamaga, D. Kassanos, G. Creatsas, Defective

antioxidant mechanism via changes in serum ceruloplasmin and total iron binding capacity of

serum in women with preeclampsia, Eur J Obstet Gynecol Reprod Biol., 84 (1999) 7-63.

[49] Fan Y, Kang Y, Zhang M. A meta-analysis of copper level and risk of preeclampsia:

evidence from 12 publications. Biosci Rep. 2016; 36(4): e00370.

[50] Song X, Li B, Li Z, Wang J, Zhang D. High serum copper level is associated with an

increased risk of preeclampsia in Asians: A meta-analysis. Nutr Res. 2017;39:14-24.

[51] RL. Wilson, JA. Grieger, T. Bianco-Miotto, CT. Roberts, Association between maternal

zinc status, dietary zinc intake and pregnancy complications: a systematic review, Nutrients, 8

(2016) 641.

[52] Hertig A, Liere P. New markers in preeclampsia. Clin Chim Acta. 2010;411(21–22):1591–

1595.

[53] M. Shibuya, Vascular endothelial growth factor (VEGF) and its receptor (VEGFR)

signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies, Gene Cancer,

2 (2011) 1097-1105.

[54] Fang, YZ; Yang, S; Wu, G Free radicals, antioxidants, and nutrition Nutrition, 2002, 18,872-879.

[55] S. Rana, AS. Cerdeira, J. Wenger, S. Salahuddin, KH. Lim, SJ. Ralston, et al, Plasma

concentrations of soluble endoglin versus standard evaluation in patients with suspected

preeclampsia, PLOS One., 7 (2012) 48259.

[56] Sen CK, Khanna S, Vwnojarvi M, Trikha P, Ellison EC, Hunt TK, Rov S. Copper-induced

vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ

Physiol 2002;282:H1821–7.

[57] Funovics P, Brostjan C, Niqisch A, Fila A, Grochot A, Mleczko K, Was H, Weiqel G,

Dulak J, Jozkowicz A. Effects of 15d-PGJ(2) on VEGF-induced angiogenic activities and

expression of VEGF receptors in endothelial cells. Prostaglandins Other Lipid Mediat

2006;79:230-44.

[58] Jiang, Y., Reynolds, C., Xiao, C., Feng, W., Zhou, Z., Rodriguez, W., Tyagi, S.C., Eaton,

J.W., Saari, J.T., Kang, Y.J. Dietary copper supplementation reverses hypertrophic

cardiomyopathy induced by chronic pressure overload in mice. J. Exp. Med., 2007;204:657-

66.

[59] Harris, E.D. A requirement for copper in angiogenesis. Nutr. Rev 2004, 62, 60-4.

[60] Feng W, Ye F, Xue W, Zhou Z, Kang YJ. Copper regulation of hypoxia-inducible factor-1

activity. Mol Pharmacol 2009;75:174–82.

[61] Iadecola C, Davisson RL. Hypertension and Cerebrovascular Dysfunction. Cell Metab.

2008; 7(6): 476–484.

[62] Kalagiri RR, Carder T, Choudhury S, Vora N, Ballard AR, Govande V, Drever N, Beeram

MR, Uddin MN. Inflammation in Complicated Pregnancy and Its Outcome. Am J Perinatol.

2016;33(14):1337-1356.

[63] Cim N, Kurdoglu M, Ege S, Yoruk I, Yaman G, Yildizhan R. An analysis on the roles of

angiogenesis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like

tyrosine kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity

of late-onset preeclampsia. J Matern Fetal Neonatal Med. 2017;30(13):1602-1607.

Downloads

Published

28.02.2022

How to Cite

Najm Nadheer, K., Abdul Aziz abdul Hussein, A., & Kadhem Al-Hakeim, H. (2022). Effect of Serum Copper on Circulating Angiogenesis-related Factors in Women withPreeclampsia. International Journal of Psychosocial Rehabilitation, 26(1), 852-865. https://doi.org/10.61841/dcg45c48