Bone Cement and Associated Failures with Total Hip Joint Replacement: A Review Study
DOI:
https://doi.org/10.61841/z98nhc43Keywords:
Bone cement, Polymethylmethacrylate, cementedimplants, total hip replacement.Abstract
Bone cement is considered the gold standard in orthopedic surgeries for hip implant fixation, providing stability and enhancing implant longevity. Polymethyl methacrylate (PMMA) bone cement is the most widely used biomaterial in implant arthroplasty. It functions as an adhesive, filling the space between the prosthetic joint and the surrounding bone tissue, allowing patients to perform daily activities independently by providing the necessary strength.
The goal of this review is to highlight the current state of cementing techniques in total hip replacement surgery. It discusses the mechanical and physiological properties of bone cement, the cementing techniques used, and the main challenges encountered during hip joint implant surgeries. Aseptic loosening is one of the most common causes of failure in cemented hip implants. This failure is attributed to mechanical issues such as degradation of the cement mantle, agglomeration of radiopacifier particles, fatigue crack initiation, and mechanical loosening due to porosity. Understanding these factors can lead to improved cement formulations, potentially increasing the survival rate of cemented implants.
Downloads
References
Abdulkarim, A., Ellanti, P., Motterlini, N., Fahey, T., & O'Byrne, J. M. (2013). Cemented versus uncemented fixation
in total hip replacement: a systematic review and meta-analysis of randomized controlled
trials. Orthopedic Reviews, 5(1), 34-44.
Agarwal, S. (2004). Osteolysis—basic science, incidence and diagnosis. Current Orthopaedics, 18(3), 220-231.
Alkire M. J., Dabezies E. J., Hastings P. R. High vacuum as a method of reducing
porosity of polymethylmethacrylate. Orthopedics. 1987;10(11):1533-1539
Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., ...&Schnettler, R. (2004). An in vitro
assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone
cement. Biomaterials, 25(18), 4383-4391.
Amirfeyz, R., & Bannister, G. (2009). The effect of bone porosity on the shear strength of the bone–cement
interface. International orthopaedics, 33(3), 843-846.
Anagnostakos, K. (2017). Therapeutic use of antibiotic-loaded bone cement in the treatment of hip and knee joint
infections. Journal of bone and joint infection, 2(1), 29-37.
Baker, A. S., &Greenham, L. W. (1988). Release of gentamicin from acrylic bone cement. Elution and diffusion
studies. The Journal of bone and joint surgery. American volume, 70(10), 1551-1557.
Bistolfi, A., Massazza, G., Verné, E., Massè, A., Deledda, D., Ferraris, S., ...&Crova, M. (2011). Antibiotic-loaded
cement in orthopedic surgery: a review. International Scholarly Research Notices, 2011.
Bitsch, R. G., Heisel, C., Silva, M., &Schmalzried, T. P. (2007). Femoral cementing technique for hip resurfacing
arthroplasty. Journal of orthopedic research, 25(4), 423-431.
Bozic, K. J., Kurtz, S. M., Lau, E., Ong, K., Vail, T. P., & Berry, D. J. (2009). The epidemiology of revision total hip
arthroplasty in the United States. JBJS, 91(1), 128-133.
Breusch, S. J. (2001). Cementing technique in total hip replacement: factors influencing survival of femoral
components. In Bone cements and cementing technique (pp. 53-79). Springer, Berlin, Heidelberg.
Breusch, S. J., &Malchau, H. (2005). The well-cemented total hip arthroplasty: theory and practice. Berlin ; New York
: Springer, c2005.
Browne, M., Shearwood-Porter, N., & Sinclair, I. (2018). The role of microconstituents on the fatigue failure of bone
cement. Procedia engineering, 213, 98-103.
Cara, A., Ballet, M., Hemery, C., Ferry, T., Laurent, F., &Josse, J. (2020). Antibiotics in bone cements used for
prosthesis fixation: an efficient way to prevent Staphylococcus aureus and Staphylococcus epidermidis
prosthetic joint infection. Frontiers in Medicine, 7, 999.
Chen, I. C., Su, C. Y., Nien, W. H., Huang, T. T., Huang, C. H., Lu, Y. C., Chen, Y. J., Huang, G. C., & Fang, H. W.
(2021). Influence of Antibiotic-Loaded Acrylic Bone Cement Composition on Drug Release Behavior and
Mechanism. Polymers, 13(14), 2240.
Dobson, P. F., & Reed, M. R. (2020). Prevention of infection in primary THA and TKA. EFORT Open Reviews, 5(9),
604-613.
Espehaug, B., Furnes, O., Havelin, L. I., Engesaeter, L. B., &Vollset, S. E. (2002). The type of cement and failure of
total hip replacements. The Journal of bone and joint surgery. British volume, 84(6), 832-838.
Eveleigh, R. (2001). The preparation of bone cement. British Journal of Perioperative Nursing.; 11, 2(58).
Gardiner, R. C., &Hozack, W. J. (1994). Failure of the cement-bone interface. A consequence of strengthening the
cement-prosthesis interface?. The Journal of bone and joint surgery. British volume, 76(1), 49-52.
Hines, C. B. (2018). Understanding Bone Cement Implantation Syndrome. AANA journal, 86(6).
Hosseinzadeh, H. R. S., Emami M., Lahiji F., Shahi A. S&Masoudi A. (2013). Acrylic bone cement in
arthroplasty.101-126
Jämsen, E., Eskelinen, A., Peltola, M., &Mäkelä, K. (2014). High early failure rate after cementless hip replacement
in the octogenarian. Clinical Orthopaedics and Related Research®, 472(9), 2779-2789.
Ingham, E., Green, T. R., Stone, M. H., Kowalski, R., Watkins, N., & Fisher, J. (2000). Production of TNF-α and
bone resorbing activity by macrophages in response to different types of bone cement
particles. Biomaterials, 21(10), 1005-1013.
Jasty, M., Maloney, W. J., Bragdon, C. R., O'connor, D. O., Haire, T., & Harris, W. H. (1991). The initiation of failure
in cemented femoral components of hip arthroplasties. The Journal of bone and joint surgery. British
volume, 73(4), 551-558.
Karrholm, J., Garellick, G., &Herberts, P. (2006). Annual Report 2005–the Swedish National Hip Arthroplasty
Register. Department of Orthopaedics, Sahlgrenska University Hospital.
Klein R.W., Scott C.P., Higham P.A. The strength of acrylic bone cement cured under thumb pressure. Biomaterials
2004;25:943-7.
Krause W., Krug W. & Miller J.E. Strength of the cement-bone interface. ClinOrthop 1982; 163:290–9
Kuehn, K., Ege, W., &Gopp, U. (2005). Acrylic bone cements: composition and properties. Orthopedic Clinics Of
North America,36(Acrylic Bone Cement in the New Millenium), 17-28
Kühn, K. D. (2005). What is bone cement?. In The well-cemented total hip arthroplasty (pp. 52-59). Springer, Berlin,
Heidelberg.
Kühn, K. D., Lieb, E., &Berberich, C. (2016). PMMA bone cement: what is the role of local
antibiotics. MaitriseOrthopaed, 243, 1-15.
Lee A.J.(2002). Factors affecting the mechanical and viscoelastic properties of acrylic bone cement. J Mater Sci
Mater Med 2002; 13, 723-33.
Lewis, G.(1999). Effect of two variables on the fatigue performance of acrylic bone cement: mixing method and
viscosity. Biomed Mater Eng 1999;, 9, 197-207.
Lindén U. Mechanical properties of bone cement. Importance of the mixing
technique. Clinical Orthopaedics and Related Research. 1991;(272):274-278
Ling, S. M., Lee, A. J., Gie, G., Timperley, A. J., Hubble, M., Howell, J., & Whitehouse, S. (2010). The Exeter Hip:
40 years of innovation in total hip arthroplasty.
Macaulay, W., DiGiovanni, C. W., Restrepo, A., Saleh, K. J., Walsh, H., Crossett, L. S., &Salvati, E. A. (2002).
Original Articles: Differences in bone–cement porosity by vacuum mixing, centrifugation, and hand
mixing. The Journal Of Arthroplasty,17569-575
Maggs, J., & Wilson, M. (2017). The relative merits of cemented and uncemented prostheses in total hip
arthroplasty. Indian journal of orthopaedics, 51(4), 377-385.
Majkowski R. S., Miles A. W., Bannister G. C., Perkins J., Taylor G.J.S. Bone surface preparation in cemented joint
replacement. J Bone Joint Surg1993; 75-B:459–63
Martínez‐ Moreno, J., Merino, V., Nácher, A., Rodrigo, J. L., Climente, M., & Merino‐ Sanjuán, M. (2017).
Antibiotic‐ loaded Bone Cement as Prophylaxis in Total Joint Replacement. Orthopaedic surgery, 9(4),
331-341.
Mau H., Schelling K., Heisel C., Wang J.S., Breusch S.J. Comparison of various
vacuum mixing systems and bone cements as regards reliability, porosity and
bending strength. ActaOrthopaedicaScandinavica. 2004;75(2):160-172.
Ong K. L., Lovald S., Black J. Orthopaedic Biomaterials in Research and Practice. 2nd ed. Hoboken, NJ: Taylor &
Francis; 2013.
Penner, M. J., Masri, B. A., & Duncan, C. P. (1996). Elution characteristics of vancomycin and tobramycin combined
in acrylic bone—cement. The Journal of arthroplasty, 11(8), 939-944.
Phedy, P., Ismail, H. D., Hoo, C., &Djaja, Y. P. (2017). Total hip replacement: A meta-analysis to evaluate survival of
cemented, cementless and hybrid implants. World journal of orthopedics, 8(2), 192.
Ruzaimi, M. Y., Shahril, Y., Masbah, O., &Salasawati, H. (2006). Antimicrobial properties of erythromycin and
colistin impregnated bone cement. An in vitro analysis. The Medical journal of Malaysia, 61, 21-26. Saleh,
K. J., El Othmani, M. M., Tzeng, T. H., Mihalko, W. M., Chambers, M. C., &Grupp, T. M. (2016). Acrylic
bone cement in total joint arthroplasty: a review. Journal of Orthopaedic Research, 34(5), 737-744.
Sinnett-Jones, P. E., Browne, M., Ludwig, W., Buffiere, J. Y., & Sinclair, I. (2005). Microtomography assessment of
failure in acrylic bone cement. Biomaterials, 26(33), 6460-6466.
Todd, J. (2010). Do polymethylmethacrylate: properties and contemporary
uses in orthopaedics. J Am AcadOrthopSurg 2010; 18, 297-305.
Vaishya, R., Chauhan, M., &Vaish, A. (2013). Bone cement. Journal of clinical orthopaedics and trauma, 4(4), 157–
163.
Vidalain J.P. Twenty-year results of the cementlessCorail stem. IntOrthop. 2011;35:189–194.
Waanders, D., Janssen, D., Mann, K. A., &Verdonschot, N. (2010). The effect of cement creep and cement fatigue
damage on the micromechanics of the cement–bone interface. Journal of biomechanics, 43(15), 3028-3034.
Webb, J. C. J., & Spencer, R. F. (2007). The role of polymethylmethacrylate bone cement in modern orthopaedic
surgery. The Journal of bone and joint surgery. British volume, 89(7), 851-857.
Yates P., Serjeant S., Rushforth G., Middleton R. The relative cost of cemented and uncemented total hip
arthroplasties. J Arthroplasty. 2006;21:102–105.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.