DETERMINATION OF SERUM MACRONUTRIENT ELEMENTS (SODIUM, POTASSIUM, CHLORIDE AND SULFATE) AND MICRONUTRIENT ELEMENTS (COPPER, AND SILICON) FOR WOMEN OSTEOPOROSIS
DOI:
https://doi.org/10.61841/b2wk7703Keywords:
Osteoporosis, Sodium, Potassium, Chloride, Sulfate, Copper, SiliconAbstract
--In this study clarification to evaluate serum macronutrient elements including potassium, sodium, chloride, and sulfate, also some micronutrient elements including copper, and silicon in patients and; they were compared with the control group. The disease was diagnosed by Dual-energy X-ray absorptiometry for women aged 50-75 years, the incidence of the disease was determined by an indicator by T-scores.The value of potassium and other elements was measured for the (65) patients and (35) healthy patients diagnosed by radiation. Results were compared between patients and healthy women and the correlation coefficient was calculated for some parameters.The results demonstrated significantly higher values of chloride, sulfate, and copper in the serum of osteoporosis women when compared to women (healthy). T-scores were significantly decreased in osteoporosis group women, compared to control groups.Serum copper, chloride and sulfate are high for women with osteoporosis and there is a significant relationship when compared to the control group. There was no significant difference for serum sodium, silicon, and potassium measured for both groups; And was used to diagnose fragility according to the data of the scale T-scores from the scan.
Downloads
References
1. Mader S, 1998. Biology. 6th ed.WCB, McGraw-Hill.
2. Dolan, E., & Sale, C. (2019). Protein and bone health across the lifespan. Proceedings of the Nutrition Society, 78(1), 45-55.
3. Hayashi, M., Nakashima, T., Yoshimura, N., Okamoto, K., Tanaka, S., & Takayanagi, H. (2019). Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell metabolism, 29(3), 627-637.
4. Rizzoli, R., Ammann, P., Chevalley, T., & Bonjour, J. P. (2001). Protein intake and bone disorders in the elderly. Joint Bone Spine, 68(5), 383-392.
5. Tabatabaei-Malazy, O., Salari, P., Khashayar, P., & Larijani, B. (2017). New horizons in treatment of osteoporosis. DARU Journal of Pharmaceutical Sciences, 25(1), 2.
6. WHO Study Group on Assessment of Fracture Risk, & its Application to Screening for Postmenopausal Osteoporosis. (1994). Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Report of a WHO Study Group (No. 843). World Health Organization.
7. Al-Khakani, M. F., Radhi, S. W., & Almohannab, A. M. (2018). Assessment of Serum Calcium, Phosphorus, Magnesium, Iron, and Zinc in Osteoporosis Postmenopausal Women. Iraq Medical Journal, 2(2).
8. Caniggia, A., & Frediani, B. (1995). Bone Absorptiometry in Metabolic Bone Disease: Baseline Values and Long-Term Treatment with Calcitriol (Post-Menopausal Osteoporosis Versus Osteomalacia). Cells and Materials, 5(2), 3.
9. Greenspan, S. L., Myers, E. R., Maitland, L. A., Resnick, N. M., & Hayes, W. C. (1994). Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly. Jama, 271(2), 128-133.
10. Kleerekoper, M. (2001). Biochemical markers of bone turnover: why theory, research, and clinical practice are still in conflict.
11. McClung M.(1997). Effective treatment strategies for patients with osteoporosis. Presented at “New Horizons in Osteoporosis”, July 9-12, Beaver Creek, Colorado, USA.
12. Scheiber II, L. B., & Torregrosa, L. (1998, February). Evaluation and treatment of postmenopausal osteoporosis. In Seminars in arthritis and rheumatism (Vol. 27, No. 4, pp. 245-261). WB Saunders.
13. Orimo H, Nakamura T, Hosoi T, Iki M, Uenishi K, Endo N, et al. Japanese guidelines for prevention and treatment of osteoporosis-executive summary. Arch Osteoporos. 2012;7:3–20.
14. O’Neill TW, Roy DK. How many people develop fractures with what outcome? Best Pract Res Clin Rheumatol. 2005;19:879–895.
15. Shiraki M, Kuroda T, Tanaka S. Established osteoporosis associated with high mortality after adjustment for age and co-mobidities in postmenopausal Japanese women. Int Med. 2011;50:397–404.
16. Link TM. Axial and peripheral QCT. Guglielmi G, ed. Osteoporosis and Bone Densitometry Measurements. New York, NY: Springer Heidelberg, 2013;123–132.
17. Yang L, Palermo L, Black DM, Eastell R. Prediction of incident hip fracture with the estimated femoral strength by finite element analysis of DXA Scans in the study of osteoporotic fractures. J Bone Miner Res. 2014;29: 2594–2600.
18. Cronin, H., O'regan, C., Finucane, C., Kearney, P., & Kenny, R. AHealth and aging: development of the Irish Longitudinal Study on Ageing health assessment. Journal of the American Geriatrics Society, 2013, 61: S269-S278
19. Chun KJ. Bone densitometry. In Seminars in nuclear medicine (Vol. 41, No. 3, pp. 220–228). Philadelphia, PA: WB Saunders.
20. Bow CH, Cheung E, Cheung CL, Xiao SM, Loong C, Soong C, et al. Ethnic difference of clinical vertebral fracture risk. Osteoporos Int. 2012;23:879–885.
21. Henwood MJ, Binkovitz L. Update on pediatric bone health. J Am Osteopathic Assoc. 2009;109:5–12.
22. Erlandson KM, Guaraldi G, Falutz J. More than osteoporosis: age-specific issues in bone health. Curr Opin HIV AIDS. 2016;11:343–350.
23. http://www.who.int/chp/topics/Osteoporosis.pdf. Accessed February 23, 2015.
24. Leib ES, Lewiecki EM, Binkley N,Hamdy RC. Official positions of the International Society for Clinical Densitometry. J Clin Densitom. 2004; 7:1–6.
25. Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R. Estrogens and androgens in skeletal physiology and pathophysiology. physiological Rev. 2017;97:135–187.
26. Aaseth J, Boivin G, Andersen O. Osteoporosis and trace elements—an overview. J Trace Elm Med Biol. 2012;26:149–152.
27. Edeogu, C. O., Ezeonu, F. C., Okaka, A. N. C., EIom, S. O., & Ekuma, C. E. (2007). Trace Elements Status of Staple Food Crops, Soils, Surface and Underground Water Sources in Ebonyi State, Nigeria. Research Journal of Environmental Sciences, 1, 141-150.
28. Asuquo, R. O., Ekanem, B. T., Udoh, B. P., Mesembe, E. O., & Ebong, E. P. (2013). Haematinic potential of Spondias mombin leaf extract in Wistar rats. Adv Biores, 4(2), 53-56.
29. Thomas, L. (1998). Lactate. Clinical laboratory diagnostics, 1st ed. Frankfurt/Main, Germany: TH- Books Verlagsgesellschaft, 160-6.
30. Swaminathan, R. (1999). Nutritional factors in osteoporosis. International journal of clinical practice, 53(7), 540-548.
31. Park, J., Choi, M., Lee, S., Choi, Y., & Park, Y. (2011). The association between bone mineral density, bone turnover markers, and nutrient intake in pre-and postmenopausal women. Korean Journal of Nutrition, 44(1), 29-40.
32. Chan, A. Y. S., Poon, P., Chan, E. L. P., Fung, S. L. M., & Swaminathan, R. (1993). The effect of high sodium intake on bone mineral content in rats fed a normal calcium or a low calcium diet. Osteoporosis International, 3(6), 341-344.
33. Ratan V.(1981). Handbook of human physiology 4th ed., Jaypee Brothers, 85-A, Delhi, India.
34. Lemann Jr, J., Pleuss, J. A., & Gray, R. W. (1993). Potassium causes calcium retention in healthy
adults. The Journal of nutrition, 123(9), 1623-1626.
35. Swaminathan, R. (2001). Biochemical markers of bone turnover. Clinica chimica acta, 313(1-2), 95-105.
36. Tucker, K. L., Hannan, M. T., & Kiel, D. P. (2001). The acid-base hypothesis: diet and bone in the Framingham Osteoporosis Study. European journal of nutrition, 40(5), 231-237.
37. Guthrie, H. A., & Picciano, M. F. (1995). Micronutrient minerals. Human nutrition. St. Louis: Mosby, 333-51.
38. Guthrie, H. A., Scott, A., & Picciano, M. F. (1995). Human nutrition. Mosby.
39. Zeabara, C. A., & Okeke, C. U. (2019). Nutrient Content Assessment of Six Citrus Species Parts and their Feedstuff Significance. Agriculture and Food Sciences Research, 6(2), 166-171.
40. Okano, T. (1996). Effects of essential trace elements on bone turnover--in relation to the osteoporosis. Nihon rinsho. Japanese journal of clinical medicine, 54(1), 148-154.
41. d'Haese, P. C., & De Broe, M. E. (1999). Trace metals in chronic renal failure patients treated by dialysis: a review. Trace elements in medicine.-Deisenhofen, 1984-1993, 16(4), 163-174.
42. .Kuivaniemi, H. E. L. E. N. A., Peltonen, L. E. E. N. A., Palotie, A. A. R. N. O., Kaitila, I. L. K. K. A., & Kivirikko, K. I. (1982). Abnormal copper metabolism and deficient lysyl oxidase activity in a heritable connective tissue disorder. The Journal of clinical investigation, 69(3), 730-733.
43. Van Dyck, K., Robberecht, H., Van Cauwenbergh, R., Deelstra, H., Arnaud, J., Willemyns, L., ... & Bastos, M. L. (2000). Spectrometric determination of silicon in food and biological samples: an interlaboratory trial. Journal of analytical atomic spectrometry, 15(6), 735-741.
44. [44].Calomme, M., Cos, P., D’Haese, P., Vingerhoets, R., Lamberts, L., De Broe, M., ... & Berghe, D.
V. (2002). Silicon absorption from stabilized orthosilicic acid and other supplements in healthy subjects. In Trace Elements in Man and Animals 10 (pp. 1111-1114). Springer, Boston, MA.
45. Huang, Z., d'Haese, P. C., Lamberts, L. V., Van Landeghem, G. F., & De Broe, M. E. (1993). Silicon determination in biological fluids by Zeeman atomic absorption spectrometry. In Trace elements in man and animals/Anke, M.[edit.] (pp. 98-99).
46. d'Haese, P. C., Shaheen, F. A., Huraib, S. O., Djukanovic, L., Polenakovic, M. H., Spasovski, G., ... & Van Landeghem, G. F. (1995). Increased silicon levels in dialysis patients due to high silicon content in the drinking water, inadequate water treatment procedures, and concentrate contamination: a multicentre study. Nephrology Dialysis Transplantation, 10(10), 1838-1844.
47. Rico, H., Gallego-Lago, J. L., Hernandez, E. R., Villa, L. F., Sanchez-Atrio, A., Seco, C., & Gervas, J. J. (2000). Effect of silicon supplement on osteopenia induced by ovariectomy in rats. Calcified Tissue International, 66(1), 53-55.
48. Misra, A., Sharma, R., Gulati, S., Joshi, S. R., Sharma, V., Ibrahim, A., ... & Mohan, V. (2011). Consensus dietary guidelines for healthy living and prevention of obesity, the metabolic syndrome, diabetes, and related disorders in Asian Indians. Diabetes technology & therapeutics, 13(6), 683-694.
49. D'Haese, P. C., Van Landeghem, G. F., Lamberts, L. V., & De Broe, M. E. (1995). HPLC-AAS hybrid technique for studying the speciation of trace metals (Al, Fe, Si, Hg) in biological fluids: A review of applications, recent experiences and perspectives. Microchimica Acta, 120(1-4), 83-90.
50. Christopher P. (1996). Case studies in metabolism bone disease: Assessing the potential for biochemical markers. Lab.Medica.Int.,8(1):1-2.
51. Loren C. (2002). The paleo diet. The Australian article. "Close to the bone" Osteoporosis, 6, July.
52. Cordain, L. (2012). AARP The paleo diet revised: Lose weight and get healthy by eating the foods you were designed to eat. John Wiley & Sons.
53. Fernandes, I., Hampson, G., Cahours, X., Morin, P., Coureau, C., Couette, S., ... & Silve, C. (1997). Abnormal sulfate metabolism in vitamin D-deficient rats. The Journal of clinical investigation, 100(9), 2196-2203.
54. Yuan, Z., Wei, P., Huang, Y., Zhang, W., Chen, F., Zhang, X., ... & Yang, X. (2019). Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Acta biomaterialia, 85, 294-309.
55. Eisinger, J., & Clairet, D. (1993). Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: A retrospective study. Magnesium Research, 6(3), 247-249.
56. Broadhurst, C. L., Cunnane, S. C., & Crawford, M. A. (1998). Rift Valley lake fish and shellfish provided brain-specific nutrition for early Homo. British Journal of Nutrition, 79(1), 3-21.
57. Valković, V., Rendić, D., Biegert, E. K., & Andrade, E. (1979). Trace element concentrations in tree rings as indicators of environmental pollution. Environment International, 2(1), 27-32.
58. MCLAREN-HOWARD ELLEN CG GRANT STEPHEN DAVIES, J. O. H. N. (1998). Hormone
replacement therapy and osteoporosis: Bone enzymes and nutrient imbalances. Journal of nutritional & environmental medicine, 8(2), 129-138.
59. Tietz N.W.(1994). Textbook of clinical chemistry. W.B. Saunders Company, USA. A Division of Harcourt Brace & Company, Philadelphia.
60. Ramesh, R., & Suresh, K. (2018). Clinico-therapeutic studies on degnala disease in buffaloes. Buffalo Bulletin, 37(3), 369-377.
61. Grant, E. C., Howard, J. M., Davies, S., Chasty, H., Hornsby, B., & Galbraith, J. (1988). Zinc deficiency in children with dyslexia: concentrations of zinc and other minerals in sweat and hair. British medical journal (Clinical research ed.), 296(6622), 607.
62. Wardlaw G.M. (1997). Contemporary nutrition: Issues and Insights. 3rd ed., McGraw-Hill Companies, USA.
63. Annino, J. S., & Giese, R. W. (1976). Clinical chemistry: principles and procedures. Little Brown and Company.
64. Huang, Z., d'Haese, P. C., Lamberts, L. V., Van Landeghem, G. F., & De Broe, M. E. (1993). Silicon determination in biological fluids by Zeeman atomic absorption spectrometry. In Trace elements in man and animals/Anke, M.[edit.] (pp. 98-99).
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.