Biocatalysis and Biotransformation for Pharmaceuticals Synthesis

Authors

  • Atheer Ahmed Majeed MSc., Department of Biology, College of Sciences, University of Baghdad Author

DOI:

https://doi.org/10.61841/724rs337

Keywords:

Biological Manipulation, Pharmaceuticals Synthesis, Bacteria

Abstract

The strategies of biological manipulation and biocatalysis for the synthesis of pharmaceuticals have risen in previous years. This review covers the following methods to candidate catalysis genes coding to enzymes in high expression to modify the microorganisms genetically. The operation will tend to create a new biotherapy used as catalysts for synthesizing a new assessable pharmaceutical product on both a laboratory and a commercial scale. 

Downloads

Download data is not yet available.

References

[1] Woojeong Kim, Kui Hyun Kang and Jung-Keun Suh 2018. Characterization of Biopharmaceuticals

Focusing on Antibody Therapeutics, IntechOpen.

[2] Jafari R, Zolbanin NM, Rafatpanah H, Majidi J, Kazemi T. 2017. Fc-fusion proteins in therapy: An updated

view. Current Medicinal Chemistry. 24(12):1228-1237.

[3] Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert 2014. The

Emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open

Proteomics.; 4:58-69.

[4] Walsh G 2014. Biopharmaceutical benchmarks 2014. Nature Biotechnology.; 32:992-100.

[5] Matthew D. Truppo, 2017. Biocatalysis in the Pharmaceutical Industry: The Need for Speed. ACS Med.

Chem. Lett. 7, 8, 476−480.

[6] Marta Kubiak, Karl-Falco Storm, Ingo Kampen, and Carsten Schilde. 2019. Relationship between Cross-Linking Reaction Time and Anisotropic Mechanical Behavior of Enzyme Crystals. Crystal Growth &

Design, 19(8), 4453-4464.

[7] Summer A. Baker Dockrey, Carolyn E. Suh, Attabey Rodríguez Benítez, Troy Wymore, Charles L. Brooks

III, Alison R.H. Narayan 2019. Positioning-Group-Enabled Biocatalytic Oxidative Dearomatization. ACS

Central Science, 5(6), 1010-1016.

[8] Völker A, Kirschner A, Bornscheuer UT, Altenbuchner J 2008. Functional expression, purification, and

characterization of the recombinantVilliger monooxygenase MekA from Pseudomonas veronii

MEK700. Appl Microbiol Biotechnol 77:1251–1260.

[9] Maria L.M., Maximiliano J.A., Hanna D., Marcela K.S., and Marco W.F. 2013. Cloning, overexpression

and biocatalytic exploration of a novel Baeyer-Villiger monooxygenase from Aspergillus fumigatus Af293.

AMB Express, 3:33.

[10] Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TW, Payne GA, Linz JE, Woloshuk CP,

Bennett JW 2004. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol, 70:1253–

1262

[11] Qiao K, Chooi YH, Tang Y 2011. Identification and engineering of the cytochalasin gene cluster from

Aspergillus clavatus NRRL. Metab Eng 13:723–732.

[12] Atheer A.M. 2014. Cloning and over overexpression of bile salt hydrolase gene A (bshA) of Lactobacillus

acidophilus in E. coli. Kharaman Marash Sutchu Imam University/Turkey, thesis

[13] Atheer A.M. (2017). Fragmentation of gallbladder stones using transformer Streptococcus salivarius and

measuring of RNA expression to cholesterol-lowering genes. Pak. J. Biotechnol. 14 (4) 745-751.

[14] Jason D., b, Trudy G. Olivera, Eleanor R. Camerona, Gerald Hsua, Tyler Jacksa, b, c, Graham C. Walkerb,

and Michael T. Hemann (2010), Suppression of Rev, the catalytic subunit of Polζ, sensitizes drug-resistant

lung tumors to chemotherapy. PNAS, 2010, 107: 20786–20791.

[15] Shou-Tung C, Chia-Chen H, Yu-Wei L, Shu-Huei H 2016. Epigenomic Explanations for the Uncertainty of Cancer Biomarkers. International Journal of Pathology and Clinical Research. 2 (2) 2469-5807.

[16] X Cindy Tian, 2004. Reprogramming of epigenetic inheritance by somatic cell nuclear transfer. Reproductive BioMedicine. 8. (5). 501-508.

[17] Annalisa Roberti, Adolfo F. Valdes, Ramón Torrecillas, Mario F. Fraga, and Agustin F.F. 2019. Epigenetics in cancer therapy and nanomedicine. Clinical Epigenetics. 11:81.

[18] Antonei B. Csoka, Moshe Szyf 2009. Epigenetic side-effects of common pharmaceuticals: A potential new

field in medicine and pharmacology. Medical Hypotheses 73: 770–780.

[19] Beth E. Zucconi and Philip A. Cole. 2017. Allosteric Regulation of Epigenetic Modifying Enzymes. Curr

Opin Chem Biol.; 39: 109–115.

[20] Sarah Heerboth, Karolina Lapinska, Nicole Snyder, Meghan Leary, Sarah Rollinson and Sibaji Sarkar

2014. Use of Epigenetic Drugs in Disease: An Overview. Genetics & Epigenetics, 6.

[21] Yorick J., Evelien W., Wim V. Berghe, and Bart De S. 2019. Peptides as epigenetic modulators: therapeutic

implications. Clinical Epigenetics, 11:101.

[22] Timothy T., Michael T. Guarnieri, and Calvin A.H. (2019). Development of a CRISPR/Cas9 System for

Methylococcus capsulatus In Vivo Gene Editing . Appl. of Enviro. Micro. 85(11): 00340-19.

[23] Goran Josipovi, Vanja Tadi, Marija Klasi, Vladimir Zanki, Ivona Beceheli1, Felicia Chung, Akram

Ghantous, Toma Keser, Josip Maduni, Maria Boˇskovi, Gordan Lauc , Zdenko Herceg, Aleksandar Vojta1

and Vlatka Zoldo 2019. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR

dCas9-based modular system. Nucleic Acids Research. 47(1): 9637–9657.

[24] Tadić V, Josipović G, Zoldoš V, Vojta A. 2019. CRISPR/Cas9-based epigenome editing: An overview of

dCas9-based tools with special emphasis on off-target activity. Methods. Jul 15; 164-165:109-119.

[25] Pflueger C, Tan D, Swain T, Nguyen T, Pflueger J, Nefzger C, Polo JM, Ford E, Lister R. 2018. A

modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of

direct fusion dCas9-DNMT3A constructs. Genome Res ResAug; 28(8):1193-1206.

[26] Liao HK, Hatanaka F, Araoka T, Reddy P, Wu MZ, Sui Y, Yamauchi T, Sakurai M, O'Keefe DD, NúñezDelicado E, Guillen P, Campistol JM, Wu CJ, Lu LF, Esteban CR, Izpisua Belmonte JC. 2017, In Vivo

Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell, 14; 171 (7): 1495-

1507.

[27] Byeon J, Yim Y-R, Kim H-H, Suh J-K , 2015. Structural identification of a non-glycosylated variant at

Ser126 for O-glycosylation site from EPO BRP, human recombinant erythropoietin by LC/MS analysis.

Molecules and Cells; 38(6):496-505.

[28] Bongers J, Cummings JJ, Ebert MB, Federici MM, Gledhill L, Gulati D, Hilliard GM, Jones BH, Lee KR,

Mozdzanowski J, Naimoli M, Burman S. 2000. Validation of a peptide mapping method for a therapeutic

monoclonal antibody: What could we possibly learn about a method we have run 100 times? Journal of

Pharmaceutical and Biomedical Analysis.; 21(6):1099-1128.

[29] G.J. Williamsa, c, A.S. Nelsonb, c, and A. Berry 2004. Directed evolution of enzymes for biocatalysis

the life sciences. CMLS, Cell. Mol. Life Sci. 61.

[30] Sullivan, C.J.; Pendleton, E.D.; Sasmor, H.H.; Hicks, W.L.; Farnum, J.B.; Muto, M.; Amendt, E.M.;

Schoborg, J.A.; Martin, R.W.; Clark, L.G.; et al. 2016, A cell-free expression and purification process for

rapid production of protein biologics. Biotechnol. J. 11, 238–248.

[31] Martin, R.W.; Des Soye, B.J.; Kwon, Y.-C.; Kay, J.; Davis, R.G.; Thomas, P.M.; Majewska, N.I.; Chen,

C.X.; Marcum, R.D.; Weiss, M.G.; et al. 2018. Cell-free protein synthesis from genomically recoded

Bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun., 9, 1203.

[32] Zhao, F.; Yu, C.H.; Liu, Y. 2019. Codon usage regulates protein structure and function by affecting

translation elongation speed in Drosophila cells. Nucleic Acids Res. 45, 8484–8492.

[33] Jascha Rolf, Katrin Rosenthal and Stephan Lütz 2019. Application of Cell-Free Protein Synthesis for Faster

Biocatalyst Development. Catalysts, 9, 190.

[34] Zemella, A.; Thoring, L.; Hoffmeister, C.; Kubick, S. 2015, Cell-free protein synthesis: Pros and cons of

prokaryotic and eukaryotic systems. ChemBioChem 16, 2420–2431.

[35] Sawasaki, T.; Ogasawara, T.; Morishita, R.; Endo, Y. 2002. A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. 99, 14652–14657

[36] Paul A. Dalby. 2007. Engineering Enzymes for Biocatalysis. Recent Patents on Biotechnology. 1, 1-9.

[37] Jinrong Min, Qin Feng, Zhizhong Li, Yi Zhang, and Rui-Ming Xu. 2003. Structure of the Catalytic Domain

of Human DOT1L, a Non-SET Domain Nucleosomal Histone Methyltransferase. Cell Press. 112: 711–723.

[38] Vlada B. Urlacher and Rolf D. Schmid, 2004, Protein Engineering Methods in Enzymology. Methods in Enzymology 388:208-24.

[39] Baixue Lin and Yong Tao 2017. Whole-cell biocatalysts by design. Microb Cell Fact. 16:106.

[40] Fabián Garzón-Posse, Liliana Becerra-Figueroa, José Hernández-Arias, and Diego Gamba-Sánchez (2018). Whole Cells as Biocatalysts in Organic Transformations. Molecules, 23, 1265.

[41] Seung Hun Park, Jin Seon Kwon, Byeong Sung Lee, Ji Hoon Park, Bo Keun Lee, Jeong-Ho Yun,

Bun Yeoul Lee1, Jae Ho Kim1, Byoung Hyun Min1, Tae Hyeon Yoo1 & Moon Suk Kim 2017 . BMP2-

Modified injectable hydrogel for osteogenic differentiation of human periodontal ligament stem cells.

Scientific Reports 7: 6603.

[42] Ameneh Alizadeh, Amir Razmjou, Mehrorang Ghaedi, Ramin Jannesar, Fahimeh Tabatabaei, Vahid

Pezeshkpour, Lobat Tayebi. 2019. Culture of dental pulp stem cells on nanoporous alumina substrates

modified by carbon nanotubes. International Journal of Nanomedicine; 14: 1907—1918.

[43] Park, J. et al. 2015. Combinatorial Effect of Stem Cells Derived from Mandible and Recombinant Human Bone Morphogenetic Protein-2. Tissue Eng. Reg. Med. 12, 343–342.

[44] Ong, K.L. et al. 2010. Off-label use of bone morphogenetic protein in the United States using administrative data. Spine 35, 1794–1800.

[45] Kim, J. et al. 2007. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28, 1830–1897.

[46] Peeters, M. et al. 2015. BMP-2 and BMP-2/7 Heterodimers conjugated to a fibrin/hyaluronic acid hydrogel in a large animal model of mild intervertebral disc degeneration. Biores. Open Access 4, 398–406.

Downloads

Published

31.07.2020

How to Cite

Ahmed Majeed, A. (2020). Biocatalysis and Biotransformation for Pharmaceuticals Synthesis. International Journal of Psychosocial Rehabilitation, 24(5), 6279-6289. https://doi.org/10.61841/724rs337