TEXTURE FEATURE EXTRACTION TO IMPROVE ACCURACY OF MALIGNANT AND BENIGN CANCER DETECTION ON CT-SCAN IMAGES

Authors

  • Sri Widodo doctoral scholar at Health Science Faculty, Duta Bangsa University, Indonesia. Author
  • Ibnu Rosyid Doctoral scholar at Radiology Department, Ir. Soekarno General Hospital, Indonesia Author
  • Mohammad Faizuddin Bin MD Noor is a doctoral scholar at Unikl Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur. Author
  • Roslan Bin Ismail Doctoral scholar Unikl Malaysian Institute of Information Technology, Universiti Kuala Lumpur, Kuala Lumpur. Author

DOI:

https://doi.org/10.61841/sda5e049

Keywords:

AAM, CT Scan, lung cancer,, mathematical morphology, SVM

Abstract

Lung cancer is a type of lung disease characterized by uncontrolled cell growth in lung tissue, whereas nodules (benign cancer) are small, round or egg-shaped lesions in the lungs. The current method used to diagnose lung cancer from CT scan images is by observing a data set of 2-D CT Scan images using the naked eye, then interpreting data one by one. This procedure is certainly not sufficient. Research conducted aims to extract texture features to improve the accuracy of malignant and benign cancers detection in CT scans. This research covers 5 (five) main points. The first is pre-processing CT-Scan images. The second is the automatic segmentation of lung area using the Active Appearance Model (AAM) method. The third is the segmentation of candidates who are considered cancer using morphological mathematics. Fourth, the process of detecting benign and malignant lung cancer is using Support Vector Machine (SVM). The fifth is the visualization of malignant and benign lung cancer using Volume Rendering. Accuracy of malignant and benign cancers detection is 79.7%.

 

 

Downloads

Download data is not yet available.

References

[1] A.Gajdhane, M. V., & L.M, P. D. (2014). Detection of Lung Cancer Stages on CT scan Images by Using Various Image Processing Techniques. IOSR Journal of Computer Engineering, 16(5), 28–35. https://doi.org/10.9790/0661-16532835

[2] Abbas, Q. (2017). Nodular-Deep : Classification of Pulmonary Nodules using Deep Neural Network. International Journal of Medical Research & Health Sciences, 6(8), 111–118.

[3] Adams, T., Dörpinghaus, J., Jacobs, M., & Steinhage, V. (2018). Automated lung tumor detection and diagnosis in CT Scans using texture feature analysis and SVM. Communication Papers of the 2018 Federated Conference on Computer Science and Information Systems, 17, 13–20. https://doi.org/10.15439/2018f176

[4] Adetiba, E., & Olugbara, O. O. (2015). Lung cancer prediction using neural network ensemble with histogram of oriented gradient genomic features. Scientific World Journal, 2015. https://doi.org/10.1155/2015/786013

[5] Al-taraweeh, M. S., Al-habashneh, S., Shaker, N., Tarawneh, W., & Tarawneh, S. (2014). Lung Cancer Detection using. 3(7), 1794–1798. https://doi.org/10.15662/IJAREEIE.2019.0802011

[6] American Lung Association. (2018). State of Lung Cancer. https://www.lung.org/our- initiatives/research/monitoring-trends-in-lung-disease/state-of-lung-cancer/

[7] Ankita, R., Kumari, C. U., Mehdi, M. J., Tejashwini, N., & Pavani, T. (2019). Lung cancer image-feature extraction and classification using GLCM and SVM classifier. International Journal of Innovative Technology and Exploring Engineering, 8(11), 2211–2215. https://doi.org/10.35940/ijitee.K2044.0981119

[8] Anuja, J., & Smitha Vas, P. (2019). Deep lung cancer prediction and segmentation on CT scan. International Journal of Engineering and Advanced Technology, 8(5), 2308– 2313.

[9] Asuntha, A., Brindha, A., Indirani, S., & Srinivasan, A. (2016). Lung cancer detection using SVM algorithm and optimization techniques. Journal of Chemical and Pharmaceutical Sciences, 9(4), 3198–3203.

[10] Chen, F., Chen, P., Muhammed, H. H., & Zhang, J. (2017). Intravoxel Incoherent Motion Diffusion for Identification of Breast Malignant and Benign Tumors Using Chemometrics. BioMed Research International, 2017.

https://doi.org/10.1155/2017/3845409

[11] Colakoglu, B., Alis, D., & Yergin, M. (2019). Diagnostic Value of Machine Learning- Based Quantitative Texture Analysis in Differentiating Benign and Malignant Thyroid Nodules. Journal of Oncology, 2019. https://doi.org/10.1155/2019/6328329

[12] Cootes, T. F., Edwards, G., & Taylor, C. J. (2013). Comparing Active Shape Models with Active Appearance Models. January 1999, 18.1-18.10. https://doi.org/10.5244/c.13.18

[13] Dandıl, E. (2018). A computer-aided pipeline for automatic lung cancer classification on computed tomography scans. Journal of Healthcare Engineering, 2018.

https://doi.org/10.1155/2018/9409267

[14] Dappa, E., Higashigaito, K., Fornaro, J., Leschka, S., Wildermuth, S., & Alkadhi, H. (2016). Cinematic rendering – an alternative to volume rendering for 3D computed

tomography imaging. Insights into Imaging, 7(6), 849–856. https://doi.org/10.1007/s13244-016-0518-1

[15] Gao, X., Su, Y., Li, X., & Tao, D. (2010). A review of active appearance models. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 40(2), 145–158. https://doi.org/10.1109/TSMCC.2009.2035631

[16] Halmos, B., Tan, E. H., Soo, R. A., Cadranel, J., Lee, M. K., Foucher, P., Hsia, T. C., Hochmair, M., Griesinger, F., Hida, T., Kim, E., Melosky, B., Märten, A., & Carcereny,

E. (2019). Impact of afatinib dose modification on safety and effectiveness in patients with EGFR mutation-positive advanced NSCLC: Results from a global real-world study (RealGiDo). Lung Cancer, 127(September 2018), 103–111. https://doi.org/10.1016/j.lungcan.2018.10.028

[17] Hasan Abdulameer, M., A. Mohammed, D., Farhan Rashag, H., & D. Rjeib, H. (2016). A Review Article for Active Appearance Model Fitting Based on Optimization Methods. Research Journal of Applied Sciences, Engineering and Technology, 12(10), 1057–1063. https://doi.org/10.19026/rjaset.12.2825

[18] Jakimovski, G., & Davcev, D. (2019). Using double convolution Neural Network for lung cancer stage detection. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030427

[19] Jeya, I. J. S., & Deepa, S. N. (2016). Lung cancer classification employing proposed real coded genetic algorithm based radial basis function neural network classifier. Computational and Mathematical Methods in Medicine, 2016.

https://doi.org/10.1155/2016/7493535

[20] Jonker, P. P. (2000). Morphological operations on 3D and 4D images: From shape primitive detection to skeletonization. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 1953 LNCS(March 2001), 371–391. https://doi.org/10.1007/3-540-44438-6_31

[21] Kadir, T., & Gleeson, F. (2018). Lung cancer prediction using machine learning and advanced imaging techniques. Translational Lung Cancer Research, 7(3), 304–312. https://doi.org/10.21037/tlcr.2018.05.15

[22] Karargyris, A., Siegelman, J., Tzortzis, D., Jaeger, S., Candemir, S., Xue, Z., Santosh, K. C., Vajda, S., Antani, S., Folio, L., & Thoma, G. R. (2016). Combination of texture and shape features to detect pulmonary abnormalities in digital chest X-rays. International Journal of Computer Assisted Radiology and Surgery, 11(1), 99–106. https://doi.org/10.1007/s11548-015-1242-x

[23] Kaufman, A., & Mueller, K. (2005). Overview of volume rendering. Visualization Handbook, December, 127–174. https://doi.org/10.1016/B978-012387582-2/50009-5

[24] Kumar, R., Srivastava, R., & Srivastava, S. (2015). Detection and Classification of Cancer from Microscopic Biopsy Images Using Clinically Significant and Biologically Interpretable Features. Journal of Medical Engineering, 2015, 1–14. https://doi.org/10.1155/2015/457906

[25] Kustanto, Widodo, S., & Tomo. (2015). Software Development To Detect Lung Nodules in Computed Tomography Scan Image Using Support Vector Machine. International Research Journal of Engineering and Technology (IRJET), 02(06), 354–360. www.irjet.net

[26] Makaju, S., Prasad, P. W. C., Alsadoon, A., Singh, A. K., & Elchouemi, A. (2018). Lung Cancer Detection using CT Scan Images. Procedia Computer Science, 125(2009), 107–

114. https://doi.org/10.1016/j.procs.2017.12.016

[27] Mesleh, A. M. (2017). Lung cancer detection using multi-layer neural networks with independent component analysis: A comparative study of training algorithms. Jordan Journal of Biological Sciences, 10(4), 239–249.

[28] iknam, F., Chen, J., Napaki, S., & Aghmesheh, M. (2011). Approach to multiple pulmonary nodules: A case report and review of literature. TheScientificWorldJournal, 11, 760–765. https://doi.org/10.1100/tsw.2011.74

[29] Pandiangan, T., Bali, I., & Silalahi, A. R. J. (2019). Early lung cancer detection using artificial neural network. Atom Indonesia, 45(1), 9–15. https://doi.org/10.17146/aij.2019.860

[30] Patil, B. G., & Jain, S. N. (2014). Cancer Cells Detection Using Digital Image Processing Methods. International Journal of Latest Trends in Engineering and Technology, 3(4), 45–49.

[31] Pehrson, L. M., Nielsen, M. B., & Lauridsen, C. A. (2019). Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: A systematic review. Diagnostics, 9(1). https://doi.org/10.3390/diagnostics9010029

[32] Sasikala, S., Bharathi, M., & Sowmiya, B. R. (2018). Lung cancer detection and classification using deep CNN. International Journal of Innovative Technology and Exploring Engineering, 8(2S), 259–262.

[33] Sharma, D., & Jindal, G. (2011). Identifying Lung Cancer Using Image Processing Techniques. International Conference on Computational Technique and Artificial Intelligence, 115–120.

[34] Song, Q. Z., Zhao, L., Luo, X. K., & Dou, X. C. (2017). Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images. Journal of Healthcare Engineering, 2017. https://doi.org/10.1155/2017/8314740

[35] Thompson, J. C., Fan, R., Black, T., Yu, G. H., Savitch, S. L., Chien, A., Yee, S. S., Sen,

M., Hwang, W. T., Katz, S. I., Feldman, M., Vachani, A., & Carpenter, E. L. (2019). Measurement and immunophenotyping of pleural fluid EpCAM-positive cells and clusters for the management of non-small cell lung cancer patients. Lung Cancer, 127(August 2018), 25–33. https://doi.org/10.1016/j.lungcan.2018.11.020

[36] Tian, Y., Shi, Y., & Liu, X. (2012). Recent advances on support vector machines research. Technological and Economic Development of Economy, 18(1), 5–33. https://doi.org/10.3846/20294913.2012.661205

[37] Tran, G. S., Nghiem, T. P., Nguyen, V. T., Luong, C. M., Burie, J. C., & Levin-Schwartz,

Y. (2019). Improving Accuracy of Lung Nodule Classification Using Deep Learning with Focal Loss. Journal of Healthcare Engineering, 2019. https://doi.org/10.1155/2019/5156416

[38] Widodo, S., Rohmah, R. N., & Handaga, B. (2018). Classification of lung nodules and arteries in computed tomography scan image using principle component analysis. Proceedings - 2017 2nd International Conferences on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2017, 2018-Janua, 153–158. https://doi.org/10.1109/ICITISEE.2017.8285485

[39] Widodo, S., Rohmah, R. N., Handaga, B., & Arini, L. D. D. (2019). Lung diseases detection caused by smoking using support vector machine. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1256–1266. https://doi.org/10.12928/TELKOMNIKA.V17I3.9799

[40] Widodo, S., & Wijiyanto. (2014). Software development for three dimensional visualization of lung on computed tomography scans using active shape model and volume rendering. Journal of Theoretical and Applied Information Technology, 65(1), 154–160.

[41] Zhou, T., Lu, H., Zhang, J., & Shi, H. (2016). Pulmonary nodule detection model based on SVM and CT image feature-level fusion with rough sets. BioMed Research International, 2016. https://doi.org/10.1155/2016/8052436

Downloads

Published

30.11.2020

How to Cite

Widodo , S., Rosyid, I., Bin , M. F., & Ismail , R. B. (2020). TEXTURE FEATURE EXTRACTION TO IMPROVE ACCURACY OF MALIGNANT AND BENIGN CANCER DETECTION ON CT-SCAN IMAGES. International Journal of Psychosocial Rehabilitation, 24(9), 3540-3553. https://doi.org/10.61841/sda5e049