Automated Detection of Atrial Fibrillation using Deep Learning Techniques
DOI:
https://doi.org/10.61841/k86w4225Keywords:
atrial fibrillation, CNN, deep learning, ECG, LSTMAbstract
Cardiac arrhythmia occurs when electric impulses co-ordinating the heart beat malfunction. In atrial fibrillation (AF), heart beats irregularly, which increases the risk of stroke and heart diseases. In this paper, the authors apply deep learning techniques to categorize ECG to classes of normal, AF or others. They utilize convolutional neural network (CNN) and hybrid of CNN and other deep learning architectures of long short-term memory (LSTM), gated recurrent unit (GRU) and recurrent neural network (RNN) to automatically detect AF. No feature extraction/selection is required. A number of trials of experiments were run (1000 epochs) to arrive at the optimum value of parameters. Learning rate was fixed in the range [0.01 0.5]. A high accuracy of 83.5% is obtained using separate training and testing datasets in classifying the input ECG as belonging to normal, abnormal (atrial fibrillation) and others with CNN-LSTM. This is the first work to perform classification mainly to detect AF using ECG recordings of very small duration (average 30s) with high accuracy employing deep learning techniques.
Downloads
References
1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., et al. (2016). TensorFlow: A system for large-scale machine learning. OSDI, 16, 265–283.
2. Acharya, U. R., Faust, O., Ghista, D. N., Vinitha Sree, S., Alvin, A. P. C., Chattopadhyay, S., Lim, T., Ng, E. Y., & Yu, W. (2013). A systems approach to cardiac health diagnosis. Journal of Medical Imaging and Health Informatics, 3(2), 261–267.
3. Acharya, U. R., Fujita, H., Adam, M., Oh, S. L., Tan, J. H., Sudarshan, V. K., & Koh, J. E. W. (2016). Automated characterization of arrhythmias using nonlinear features from tachycardia ECG beats. IEEE International Conference on Systems, Man, and Cybernetics. DOI: 10.1109/SMC.2016.7844294.
4. Acharya, U. R., Fujita, H., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adam, M. (2017). Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Information Sciences, 405.
5. Cho, K., Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
6. Chugh, S. S., Havmoeller, R., Narayanan, K., Singh, D., Rienstra, M., Benjamin, E. J., Gillum, R. F., Kim, Y. H., McAnulty, J. H., Zheng, Z. J., et al. (2013). Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. American Journal of Cardiology, 129(8), 837–847.
7. Clifford, G., Liu, C., Moody, B., Lehman, L., Silva, I., Li, Q., Johnson, A., & Mark, R. (2017). AF classification from a short single lead ECG recording: The Physionet computing in cardiology challenge 2017. Computing in Cardiology, 44.
8. Desai, U., Martis, R. J., Acharya, U. R., Nayak, C. G., Seshikala, G., & Shetty, K. R. (2016). Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. Journal of Mechanics in Medicine and Biology, 16(1), 1640005.
9. Du, X., Rao, N., Qian, M., Liu, D., Li, J., Feng, W., Yin, L., & Chen, X. (2014). A novel method for real-time atrial fibrillation detection in electrocardiograms using multiple parameters. Annals of Noninvasive Electrocardiology, 19(3), 217–225.
10. Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
11. Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: continual prediction with LSTM. Neural Computation, 12(10), 2451–2471.
12. Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3(Aug), 115–143.
13. Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet. Circulation, 101(23), 215–220.
14. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
15. Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov), 2579–2605.
16. Naccarelli, G. V., Varker, H., Lin, J., & Schulman, K. L. (2009). Increasing prevalence of atrial fibrillation and flutter in the United States. American Journal of Cardiology, 104(11), 1534–1539.
17. Pürerfellner, H., Pokushalov, E., Sarkar, S., Koehler, J., Zhou, R., Urban, L., & Hindricks, G. (2014). P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors. Heart Rhythm, 11(9), 1575–1583.
18. Rahul, K. P., Vinayakumar, R., Ekanath, R., Gopalakrishnan, E. A., & Soman, K. P. (2017a). Instantaneous heart rate as a robust feature for sleep apnea severity detection using deep learning. IEEE EMBS International Conference on Biomedical & Health Informatics.
19. Rahul, K. P., Dhara, P. J., Ekanath, R., Gopalakrishnan, E. A., & Vinayakumar, R. (2017b). Single sensor techniques for sleep apnea diagnosis using deep learning. IEEE International Conference on Healthcare Informatics (ICHI).
20. Sujadevi, V. G., Soman, K. P., Vinayakumar, R., & Sankar, A. P. (2017a). Real-time detection of atrial fibrillation from short time single lead ECG traces using recurrent neural networks. International Symposium on Intelligent Systems Technologies and Applications, Springer, 212–221.
21. Sujadevi, V. G., Soman, K. P., Vinayakumar, R., & Sankar, A. P. (2017b). Deep models for phonocardiography (PCG) classification. IEEE International Conference on Intelligent Communication and Computational Techniques (ICCT), 211–216.
22. Sujadevi, V. G., Soman, K. P., Vinayakumar, R., & Sankar, A. P. (2018). Anomaly detection in phonocardiogram employing deep learning. Computational Intelligence in Data Mining, 525–534.
23. Swapna, G., Ghista, D. N., Martis, R. J., Ang, A. P. C., & Vinitha Sree, S. (2012). ECG signal generation and heart rate variability signal extraction. Journal of Mechanics in Medicine and Biology, 12(4), 1240012.
24. Swapna, G., Soman, K. P., & Vinayakumar, R. (2018a). Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Computer Science, 132, 1253–1262.
25. Swapna, G., Soman, K. P., & Vinayakumar, R. (2018b). Automated detection of cardiac arrhythmia using deep learning techniques. Procedia Computer Science, 132, 1192–1201.
26. Swapna, G., Vinayakumar, R., & Soman, K. P. (2018c). Diabetes detection using deep learning algorithms. ICT Express, 4, 243–246.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
