A REVIEW ON RECENT TRENDS IN DEEP LEARNING METHODS FOR MEDICAL IMAGE ANALYSIS

Authors

  • Srinivasarao Gajula Departments of ECE,Koneru Lakshmaiah Educational Foundation, Guntur, India Author

DOI:

https://doi.org/10.61841/4eegb373

Keywords:

MRI image,, --CT image,, Convolution neural network (CNN),, SVM and Multi-class Support vector machines (MCSVM),, ANN (Artificial Neural Networks), Deep learning techniques,, ,Stationary Wavelet Transform (SWT),, GCNN (Growing Convolution Neural Network

Abstract

In this paper we are discussing about deep learning for medical image classification and analysis. First, we will discuss the importance of the deep learning and then the basic steps involved in deep learning. To evaluate tumours manually a very difficult task. Now a day’s in many applications medical image processing plays an important role. A significant increase was observed in medical cases associated with a brain tumour. MRI and CT images are mostly used to detect tumours and to examine abnormalities in terms of shape, size and location of the tumour. There are different techniques implemented for brain tumour diagnosis. Recent study focuses on 3D-based Convolution neural network (CNN), SVM and Multi-class Support vector machines (MCSVM), ANN (Artificial Neural Networks), for Deeper Segmentation.

Downloads

Download data is not yet available.

References

1. El-Dahshan ESA, Mohsen HM, Revett K, Salem A-BM. Computer-aided diagnosis of human brain tumor through MRI: a survey and a new algorithm. Expert Syst. Appl. 2014;41(11):5526–45. https://doi.org/10.1016/j.eswa.2014.01.021.

2. Jayadevappa D, Kumar SS, Murty DS. Medical image segmentation algorithms using deformable models: a review. IETE Tech. Rev. 2011;28(3):248–55. https:// doi.org/10.4103/0256-4602.81244.

3. Yazdani S, Yusof R, Karimian A, Pashna M, Hematian A. Image segmentation methods and applications in MRI brain images. IETE Tech. Rev. 2015;32(6):413–27. https://doi.org/10.1080/02564602.2015.1027307.

4. Acharya, U. Rajendra, Steven Lawrence Fernandes, Joel En WeiKoh, Edward J. Ciaccio, Mohd Kamil Mohd Fabell, U. John Tanik, V. Rajinikanth, and Chai Hong Yeong. Automated Detection of Alzheimer’s Disease Using Brain MRI Images–A Study with Various Feature Extraction Techniques. Journal of Medical Systems 43 (9), (2019), 302.

5. S. Clare, 1997, Functional MRI: Methods and Applications, Ph.D. Thesis, University of Nottingham, Nottingham, United Kingdom.

6. Amin J, Sharif M, Yasmin M, Fernandes SL. A distinctive approach in brain tumor detection and classification using MRI. Pattern Recognition Letters. (2017) pp. 1-10.

7. Marie Bruun, Juha Koikkalainen, Hanneke F.M. Rhodius-Meester, Marta Baroni, Le Gjerum, Mark van Gils, Hilkka Soininen, Anne M. Remes, Päivi Hartikainen, Gunhild Waldemar, Patrizia Mecocci, Frederik Barkhof, Yolande Pijnenburg, Wiesje M. van der Flier, Steen G. Hasselbalch, Jyrki Lötjönen, Kristian S. Frederiksen, Detecting frontotemporal dementia syndromes using MRI biomarkers, NeuroImage: Clinical, Volume 22, (2019), pp. 101711.

8. Nicola Amoroso, Marianna La Rocca, Alfonso Monaco, Roberto Bellotti, Sabina Tangaro, Complex networks reveal early MRI markers of Parkinson’s disease, Medical Image Analysis, Volume 48, (2018),

pp. 12-24.

9. Xing XX, Zhou YL, Adelstein JS, Zuo X-N. PDE-based spatial smoothing: a practical demonstration of impacts on MRI brain extraction, tissue segmentation and registration. Magn. Reson. Imaging 2011;29(5):731–8. https://doi.org/10. 1016/j.mri.2011.02.007.

10. Huang J, Chen C, Axel L. Fast multi-contrast MRI reconstruction. Magn. Reson. Imaging 2014;32(10):1344–52. https://doi.org/10.1016/j.mri.2014.08.025.

11. Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S. Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Reson. Imaging 2012;30(7):964–77. https://doi.org/10.1016/j.mri.2012.02.019.

12. Kayvanrad MH, McLeod AJ, Baxter JS, McKenzie CA, Peters TM. Stationary wavelet transform for under-sampled MRI reconstruction. Magn. Reson. Imaging 2014;32(10):1353–64. https://doi.org/10.1016/j.mri.2014.08.004.

13. Yuan J, Wang J. Compressive sensing based on L1 and Hessian regularizations for MRI denoising. Magn. Reson. Imaging 2018;51:79–86. https://doi.org/10.1016/j. mri.2018.04.015.

14. Hu J, Zhou J, Wu X. Non-local MRI denoising using random sampling. Magn. Reson. Imaging 2016;34(7):990–9. https://doi.org/10.1016/j.mri.2016.04.008.

15. Mamta Mittal, Lalit Mohan Goyal, Sumit Kaur, Iqbaldeep Kaur, Amit Verma, D. Jude Hemanth, Deep learning based enhanced tumor segmentation approach for MR brain images, Applied Soft Computing, 78, (2019), pp. 346-354.

16. S. T. Kebir and S. Mekaoui, An Efficient Methodology of Brain Abnormalities Detection using CNN Deep Learning Network, International Conference on Applied Smart Systems (ICASS), Medea, Algeria, (2018), pp. 1-5.

17. Muhammed Talo, Ulas Baran Baloglu, Özal Yıldırım, U Rajendra Acharya, Application of deep transfer learning for automated brain abnormality classification using MR images, Cognitive Systems Research, 54, (2019), pp. 176-188.

18. S. N. Sulaiman, N. A. Non, I. S. Isa and N. Hamzah, Segmentation of brain MRI image based on clustering algorithm, IEEE Symposium on Industrial Electronics & Applications (ISIEA), Kota Kinabalu, (2014),

pp. 60-65.

19. Jingcong Li, Zhu Liang Yu, Zhenghui Gu, Hui Liu, Yuanqing Li, MMAN: Multi-modality aggregation network for brain segmentation from MR images, Neurocomputing, 358, (2019), pp. 10-19.

20. Parveen and A. Singh, Detection of brain tumor in MRI images, using combination of fuzzy c-means and SVM, International Conference on Signal Processing and Integrated Networks (SPIN), (2015), pp. 98- 102.

21. Thaha, M. Mohammed, Kumar, K. Pradeep Mohan, Murugan, B. S., Dhanasekeran, S., Vijayakarthick, P., Selvi, A. Senthil, Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images, Journal of Medical Systems, 43 (9), (2019), pp. 294.

22. R. A. Rajam, R. Reshmi, A. Suresh, A. Suresh and S. Sindhuja, Segmentation and Analysis of Brain Tumor using Meta-Heuristic Algorithm, International Conference on Recent Trends in Electrical, Control and Communication (RTECC), Malaysia, Malaysia, (2018), pp. 256-260.

23. Rajinikanth V., Fernandes Steven Lawrence, Bhushan Bharath, Harisha and Sunder Nayak Ramesh, Segmentation and analysis of Brain Tumor using Tsallis Entropy and Regularized Level Set, International Conference on Micro-Electronics, Electromagnetics and Telecommunications, Springer Singapore, (2018), pp. 313-321.

24. Alfonse, Marco, and Abdel-Badeeh M. Salem, an automatic classification of brain tumors through MRI using support vector machine. Egyptian Computer Science Journal 40 (03), (2016).

25. Nilesh Bhaskarrao Bahadure, Arun Kumar Ray, and Har Pal Thethi, Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM, International Journal of Biomedical Imaging, (2017), pp. 1-12.

26. H. A. M. Ali, M. A. A. Ahmed and E. M. Hussein, MRI Brain Tumour Segmentation Based on Multimodal Clustering and Level-set Method, International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), Khartoum, (2018), pp. 1-5.

27. Krishnakumar, B., Kousalya, K., Gokul, S., Karthikeyan, R., & Kaviyarasu, D. (2020). Image caption generator using deep learning. International Journal of Advanced Science and Technology, 29(3 Special Issue), 975-980. Retrieved from www.scopus.com

28. Lakshmi Prasanna, K., & Ashwini, S. (2019). Automatic breast cancer detection and classification using deep learning techniques. Test Engineering and Management, 81(11-12), 5505-5510. Retrieved from www.scopus.com

29. Jeya, S., & Sankari, L. (2020). Pso based deep learning model for forecasting pm2.5. Test Engineering and Management, 83, 8926-8932. Retrieved from www.scopus.com

30. Gunavardhan, K., Prabhakar Reddy, I., & Sujatha, P. (2019). A convolution neural network (CNN) based deep learning neural network forecast model for wind energy prediction. International Journal of Advanced Science and Technology, 28(19), 141-150. Retrieved from www.scopus.com

31. Kiran Kumar, J. P., & Supriya, M. C. (2020). Towards real time logo detection and classification using deep learning. International Journal of Control and Automation, 13(2), 63-73. Retrieved from www.scopus.com

Downloads

Published

30.06.2020

How to Cite

Gajula, S. (2020). A REVIEW ON RECENT TRENDS IN DEEP LEARNING METHODS FOR MEDICAL IMAGE ANALYSIS. International Journal of Psychosocial Rehabilitation, 24(6), 8518-8524. https://doi.org/10.61841/4eegb373