A Review of Biosurfactants (Glycolipids): The Characteristics, Composition and Application

Authors

  • Mohammed Kammas Abdul Kareem Institute of Medical Technology, Medical Technology Laboratories - Al-Mansour, Iraq Author
  • Amel H. Mussa Department of Microbiology, College of Science, Mustansiriyah University, Iraq Author

DOI:

https://doi.org/10.61841/c3fkcf46

Keywords:

Biosurfactant, Biodegradation, Rhamnolipids, Trehalolipids, Sophorolipids, Glycolipids

Abstract

Biosurfactants are natural products with surface-active properties; they can be produced by various types of microorganisms. The biosurfactants as biological compounds had various aspects of applications in different fields of life, including environmental applications, oil recovery and bioremediation, and pharmaceutical and agricultural industries. Biosurfactants could be classified interdependently according to the molecular weight (M.W.), physicochemical exclusivity, and mode of their action. Glycolipids, one of the most important biosurfactants, include rhamnolipids, trehalolipids, and sophorolipids, which have gained widespread attention due to their low toxicity, environmental friendliness, and ready biodegradability. 

Downloads

Download data is not yet available.

References

[1] Abdel-Mawgoud AM, Lepine F, Deziel E A (2014). Stereospecific pathway diverts beta-oxidation

intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol.; 21: 156–64.

[2] Abdel-Mawgoud AM, Lepine F, Deziel ERhamnolipids: diversity of structures, microbial origins and roles.

Appl Microbiol Biotechnol.; 86: 1323–36. (2010).

[3] Akira, S. and Akira, Y., (1986), Method of Modifying Quality of Wheat Flour Product. Patent

[4] Allingham, R.P., (1971), Sophoroside Esteres in Prepared Food Products. Patent US 3.622.344,

[5] Amani H, Mehrnia MR (2010) Scale up and application of biosurfactant from Bacillus subtilis in enhanced

oil recovery. Appl Biochem Biotechnol 162:510–523.

[6] Anderson RJ, Newman MS.,.(1983).The chemistry of the lipids of tubercle bacilli: xxxiii. isolation of

trehalose from the acetone-soluble fat of the human tubercle Bacillus, J Biol Chem, Vol. 101, pp. 499–504

[7] Ankulkar R., and Chavan M. (2019) Characterisation and Application Studies of Sophorolipid

Biosurfactant by Candida tropicalis RA1. J Pure Appl Microbiol, 13(3), 1653-1665 | September.

[8] Bajaj VK, Annapure US. (2015) Castor oil as secondary carbon source for production of sophorolipids

using Starmerella bombicola NRRL Y-17069. J Oleo Sci 323:315–323

[9] Bekierkunst A., Levij I. S., Yarkoni E., Vilkas E., Adam A., Lederer E.:. 1969, Granuloma formation

induced in mice by chemically defined mycobacterial fractions. J Bacteriol. 100, 95- 102

[10] Bertrand JC, Bonin P, Goutx M, Gauthier M, Mille GThe. (1994) potential application of biosurfactants in

combating hydrocarbon pollution in marine environments. Res Microbiol.;145:53–6

[11] Bognolo, G(1999). Biossurfactants as emulsifying agents for hydrocarbons. Coll. Surf. A Physicochem.

Eng. Asp., 152, 41–52.

[12] Bouchez-Naïtali, M.,Vandecasteele J.P.: (2008) Biosurfactants, an help in the biodegradation of

hexadecane? The case of Rhodococcus and Pseudomonas strains. World Journal of Microbiology and

Biotechnology., 24, 1901-1907.

[13] Câmara J.M.D.A Sousa· M.A.S. Barros N.E.L Oliveira. M C. (2019). Application of rhamnolipid

biosurfactant produced by Pseudomonas aeruginosa in microbial-enhanced oil recovery. Journal of

Petroleum Exploration and Production Technology September, Volume 9, Issue 3, 2333–2341

[14] Casas J.A., and. García-Ochoa F, (1999) Sophorolipid production by Candida bombicola: medium

composition and culture methods, Journal of Bioscience and Bioengineering, 88(5) 488–494,

[15] Chami M., Andréau K., Lemassu A., Petit J.F., Houssin C., Puech V., Bayan N., Chaby R., Daffé.(2002).

Priming and activation of mouse macrophages by trehalose-6,6’-dicorynomycolate vesicles from

Corynebacterium glutamicum. FEMS Immunol Med Mic., 32, 141-147

[16] Chandran P. and Das N.,(2011). Characterization of sophorolipid biosurfactant produced by yeast species

grown on diesel oil, International Journal of Science and Nature, 2, (1). 63–71

[17] Chen M, Dong C, Penfold J, Thomas RK, Smyth TJ, et al. (2011) Adsorption of sophorolipid

biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate, at the air/water interface.

Langmuir 27(14): 8854-8866.

[18] Chong H and Li Q. (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies.

Microb Cell Fact 16:137 DOI 10.1186/s12934-017-0753-2.

[19] Ciesielska K., Li B., Groeneboer S., Van Bogaert I.N.A, Lin Y-C., Soetaert W., Van de Peer Y., and

Devreese B.: (2013). SILAC-Based Proteome Analysis of Starmerella bombicola Sophorolipid Production,

Journal of Proteome Research, 12(10), pp. 4376–92, October.

[20] Ciesielska K., Van Bogaert I.N.A., Chevineau S., Li B., Groeneboer S., Soetaert W., Van de Peer Y., and

Devreese B.,(2014) Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase

required for lactonization of sophorolipids, Journal of Proteomics, 98(2014), pp. 159–74,

[21] Daverey A., &and. Pakshirajan K, (2010), Sophorolipids from Candida bombicola using mixed hydrophilic

substrates: production, purification and characterization, Colloids and Surfaces B: Biointerfaces, 79(1),

246–253,

[22] de Oliveira M.R., Camilios-Neto D., Baldo C., Magri A., Antonia M, Celligoi P. C.(2014) Biosynthesis

And Production Of Sophorolipids. International journal of scientific and technology research 3 (11),

[23] Desai JD, Banat IM. (1997 Microbial production of surfactants and their commercial potential, Microbiol

Mol Biol Rev 61(1): 47-64.)

[24] El-Sheshtawy H.S., Doheim M.M.. (2014) Selection of Pseudomonas aeruginosa for biosurfactant production and studies of its antimicrobial activity. Egyptian Journal of Petroleum 23, 1–6

[25] Espuny M.J., Egido S., Rodon I., Manresa A., Mercadé M.E. (1996), Nutritional requirement of a

biosurfactant producing strain Rhodococcus sp. 51T7. Biotechnol Tech. 7, 745-748

[26] François B., Casaregola S., Farrokh C, Frisvad JC.,. Gerds M.L, Hammes W.P., Harnett J (2012). Food

Fermentations: Microorganisms with Technological Beneficial Use. International Journal of Food

Microbiology 154: 87–97.

[27] Franzetti A., Bestetti G., Caredda P, La Colla P., Tamburini E.:.(2008) Surface-active compounds and their

role in bacterial access to hydrocarbons in Gordonia strains. Fems Microbiol Ecol. 63, 238- 248

[28] Franzetti A., Caredda P., La Colla P., Pintus M., Tamburini E., Papacchini M., Bestetti G.: (2009). Cultural

factor affecting biosurfactant production by Gordonia sp. BS29. Int. Biodeterior Biodegrad.

[29] Franzetti A, Gandolfi. I, Bestetti G., J.P. Smyth T, Banat I.M. (2010),Production and applications of

trehalose lipid biosurfactants,European Journal of Lipid Science and Technology-Volume112, Issue 6,

Special Issue: Microbial biosurfactants, Pages 617-627

[30] Freitas C.A.U.Q., Silveira V.A.I., Celligoi M.A.P.C..(2018) Antimicrobial Applications of Sophorolipid

from Candida bombicola: a Promising Alternative to Conventional Drugs. Adv Biotech & Micro.; 9(1):

555753

[31] Glover RE, Smith RR, Jones MV, Jackson SK, Rowlands CC. (1999).An EPR investigation of surfactant

action on bacterial membranes. FEMS Microbiology Letters 177(1): 57-62

[32] Gudina EJ, Rodrigues AI, de Freitas V, Azevedo Z, Teixeira JA, Rodrigues LR;. (2016) Valorization of

agro-industrial wastes towards the production of rhamnolipids. Biores Technol. 212:144–50.

[33] Hassan M, Essam T, Yassin AS, Salama A (2016) Optimization of rhamnolipid production by biodegrading

bacterial isolates using Plackett–Burman design. Int J Biol Macromol 82:573–579.

[34] Hirata Y., Ryu M., Oda Y., Igarashi K., Nagatsuka A., Furuta T., & Sugiura M.,(2009), Novel

characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants,

Journal of Bioscience and Bioengineering, 108(2). 142–146,

[35] Hörmann B, Müller MM, Syldatk C, Hausmann R. (2010) Rhamnolipid.production by Burkholderia

plantarii DSM 9509T. Eur J Lipid,Sci Technol 112:674–680

[36] Hu, Y. & Ju, L.K. (2001) Sophorolipid production from different lipid precursors observed with LC-MS.

Enzyme and Microbial Technology. Vol-29, issue 10, pg 593–601.

[37] Husain S.(2008) Effect of surfactants on pyrene degradation by Pseudomonas fluorescens 29L. World J

Microbiol Biotechnol.; 24: 2411–9.

[38] Jitendra D. and Banat I.. (1997)Production of Surfactants and Their Commercial Potential. Microbiology

and molecular biology reviews p. 47–64 Vol. 61, No. 1 JP 61-205449A.

[39] Kurtzman C.P., (2012) Candida kuoi sp nov, an anamorphic species of the Starmerella yeast clade that

synthesizes sophorolipids, International Journal of Systematic and Evolutionary Microbiology, 62(9), pp.

2307–2311

[40] Kuyukina M.S., Ivshina I.B., Philp J.C., Christofi N., Dunbar S.A.,. Ritchkova M.I. (2001): Recovery of

Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. JMicrobiol Methods., 46, 149-156

[41] Lang, S. and Philp, J.C. (1998) Surface-active lipids in rhodococci. Anton Leeuw Int J G 74, 59–70.

[42] Liu, C.W. and Liu, H.S. (2011) Rhodococcus erythropolis strain NTU-1 efficiently degrades and traps

diesel and crude oil in batch and fed-batch bioreactors. Process Biochem 46,202–209.

[43] Lourith, N. and Kanlayavattanakul, M,. (2009) Natural surfactants used in cosmetics: glycolipids.

International Journal of Cosmetic Science. Vol- 31,issue 4, pg 255–261

[44] Magalhaes L, Nitschke M. (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes

and their synergistic interaction with nisin. Food Control.;29:138–42

[45] Morya VK, Park JH, Kim TJ, Jeon S, Kim EK (2013) Production and characterization of low molecular

weight sophorolipid under fed-batch culture. Bioresour Technol 143: 282-288.

[46] Mutalik S.R., Vaidya B.K., Joshi R.M., Desai K.M., and Nene S.N. (2008). Use of response surface

optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol.

99, 7875-7880.

[47] Natsuhara, S. Oka, K. Kaneda, Y. Kato, I. Yano: (1990)Parallel antitumor, granuloma-forming and tumornecrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubra that differ in carbohydrate

moiety: structure-activity relationships. Cancer Immunol Immunother, 31, 99-106

[48] Niescher, S., Wray, V., Lang, S., Kaschabek, S.R. and Schlomann, M. (2006) Identification and structural

characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP.

Appl Microbiol Biotechnol 70, 605–611.

[49] Onwosi CO, Odibo FJC. (2012). Effects of carbon and nitrogen sources on rhamnolipid biosurfactant

production by Pseudomonas nitroreducens isolated from soil. World J Microbiol Biotechnol.; 28: 937–42.

[50] Orbach-Arbouys S., Tenu J. P., Petit J. F. (1983). Enhancement of in vitro and in vivo antitumor activity by

cord factor (6-6’-dimycolate of trehalose) administered suspended in saline. Int Arch Allergy Appl

Immunol. 71, 67-73

[51] Ortiz A., Teruel J.A., Espuny M. JMarques., A., Manresa A. and Aranda F. J.:.(2008) Interactions of

aRhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim

Biophys Acta-Biomembr. 1778, 2806-2813

[52] Otto R.T,. Daniel H.J,. Pekin G,. Müller-Decker K, Fürstenberger G., Reuss M., and Syldatk C., (1999.)

Production of sophorolipids from whey Product composition, surface active properties, cytotoxicity and

stability against hydrolases by enzymatic treatment, Applied Microbiology and Biotechnology, vol. 52,, pp.

495–501,

[53] Parant M., Parant F., Chedid L., Drapier J. C., Petit J. F., Wietzerbin J., Lederer E.: (1977) Enhancement of

nonspecific immunity to bacterial infection by cord factor (6,6’-trehalose dimycolate). J Infect Dis. 135,

771-777.

[54] Parra, J. L., J. Guinea, M. A. Manresa, M. Robert, M. E. Mercade, F.Comelles, and M. P. Bosch. (1989).

Chemical characterization and physicochemical behaviour of biosurfactants. J. Am. Oil Chem. Soc. 66:141–

145.

[55] Paulino BN, Pessôa MG, Mano MC, Molina G, Neri-Numa IA,. (2016) Current status in biotechnological

production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 100(24): 10265-

10293.

[56] Paulino BN, Pessoa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM; (2016)Current status in

biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol.

100:10265–93.

[57] Pekin.G., Vardar-Sukan F., & Kosaric N.,, (2005) Production of Sophorolipids from Candida bombicola

ATCC 22214 Using Turkish Corn Oil and Honey,‖ Engineering in Life Sciences, 5(4),. 357–362

[58] Ribeiro I.A, Bronze M.R., Castro M.F, and. Ribeiro M.H.L, (2013), Design of selective production of

sophorolipids by Rhodotorula bogoriensis through nutritional requirements, Journal of Molecular

Recognition, 25(11), 630–640.

[59] Rosenberg, E. and Ron, E.Z. (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol

8, 313–316.

[60] Roy S, Chandni S, Das I, Karthik L, Kumar G, Rao KVB.. (2015) Aquatic model for engine oil degradation

by rhamnolipid producing Nocardiopsis VITSISB. 3 Biotech. 5:153–64

[61] Sachdev DP, Cameotra SS. (2013)Biosurfactants in agriculture. Appl Microbiol Biotechnol.; 97: 1005–16.

[62] saharan- BS, Sahu RK, sharma D.(2011) A Review on Biosurfactants: Fermentation, Current

Developments and production, Genetic Engineering and Biotechnology Journal. vol. 14, pp. 1–18,

[63] Sakaguchi I., Ikeda N., Nakayama M., Kato Y., Yano I., Kaneda. (2000) Trehalose 6,6’- dimycolate (cord

factor) enhances neovascularization through vascular endothelial growth factor production by neutrophils

and macrophages. Infect Immun. 68, 2043-2052

[64] Satpute, S.K., Banat, I.M., Dhakephalkar, P.K., Banpurkar,A.G. and Chopade, B.A. (2010) Biosurfactants,

bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28, 436–450.

[65] Schooling SR, Charaf UK, Allison DG, Gilbert P.(2004). A role for rhamnolipid in biofilm dispersion.

Biofilms.; 1: 91–9

[66] Shah, V., (2005). Sophorolipids, Microbial Glycolipids with Anti-Human Immunodeficiency Virus and

Sperm-Immobilizing Activities. Antimicrobial Agents and Chemotherapy. 49(10), 4093–4100

[67] Shoeb, E.; Akhlaq, F.; Badar, U.; Akhter, J.; Imtiaz, S. (2013). Classification and industrial applications of

biosurfactants. Natural and Applied Sciences. 4(3): 243-252.

[68] Suleman S K and Mussa A. H.. (2018) Anti Adhesive Activity of Biosurfactant roduced by P. aeruginosa

Isolated from Rhizosphere Wheat Root from Iraqi Soil against Some UTI Bacteria Indian Journal of

Natural Sciences.Vol.9 Issue 51 December

[69] Takayama K., Wang, C and Besra G.l S(2005). Pathway to Synthesis and Processing of Mycolic Acids in

Mycobacterium tuberculosis. clinical microbiology reviews p. 81–101 Vol. 18, No. 1.0893-

8512/05/$08.00_0

[70] Van Bogaert I.N., Groeneboer S., Saerens K.M.J., and Soetaert W.(2011). The role of cytochrome P450

monooxygenase in microbial fatty acid metabolism, The FEBS Journal, 278(2), pp. 206–221

[71] Van Bogaert I.N.A., Saerens K.M.J, De Muynck C., Develter D.W.G, Soetaert W., and Vandamme E.J.,

(2007), Microbial production and application of sophorolipids (a), Applied Microbiology and

Biotechnology, 76(1), pp. 23–34,

[72] van Dyke M.I., Gulley S.L., Lee H., Trevors J. T.: Evaluation of microbial surfactants for recovery of

hydrophobic pollutants from soil. J Ind Microbiol. 1993, 11, 163-170.

[73] Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S.. (2010).Rhamnolipid biosurfactants as new players in

animal and plant defense against microbes. Int J Mol Sci; 11:5096–109

[74] Vatsa P, Sanchez L, Clement C, Baillieul F, Dorey S.(2010). Rhamnolipid biosurfactants as new players in

animal and plant defense against microbes. Int J Mol Sci.; 11:5096–109.

[75] White D.A.,. Hird L.C and. Ali S.T.(2013). Production and characterization of a trehalolipid biosurfactant

produced by the novel marine bacterium Rhodococcus sp., strain PML026. Journal of Applied

Microbiology 115, 744— 755

[76] Yoo, D.S., Lee, B.S and Kim, E.K. (2005). Characteristics of Microbial Surfactants as Antifungal Agent

Against Plant Pathogenic Fungus. Journal of Microbiological Methods. 15(6) 1164–1169

[77] Zaragoza, A., Aranda, F.J., Espuny, M.J., Teruel, J.A., Marques, A., Manresa, A. and Ortiz, A (2009).

Mechanism of membrane permeabilization by a bacterial trehalose lipid biosurfactant produced by

Rhodococcus sp. Langmuir 25, 7892–7898.

Downloads

Published

31.07.2020

How to Cite

Kammas Abdul Kareem, M., & H. Mussa, A. (2020). A Review of Biosurfactants (Glycolipids): The Characteristics, Composition and Application. International Journal of Psychosocial Rehabilitation, 24(5), 3795-3807. https://doi.org/10.61841/c3fkcf46