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ALGORITHMS FOR IDENTIFICATION OF 
LINEAR DYNAMIC CONTROL OBJECTS 

BASED ON THE PSEUDO-CONCEPT 
CONCEPT 

 
1Zaripov O.O., 2Shukurova O.P., 3Sevinov J.U. 

Abstract: Regularized algorithms for identifying linear dynamic control objects based on the concept of pseudo 

inversion are given. The equation of the control object is focused on solving a number of applied problems and is 

selected in the form of a multidimensional dynamic regression equation. To solve the equation in question, we use 

differentiation formulas for quadratic functionals with respect to matrix variables and regularized algorithms based 

on non-orthogonal factorizations and pseudo in versions of square matrices. The obtained regular algorithms 

contribute to increasing the accuracy of estimating the parameters of the class of dynamic control objects under 

consideration. 
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I. INTRODUCTION 
Currently, in connection with the development of technology, the complexity of managed objects in developed 

and designed control systems is significantly increased. The structure of most modern control objects is such that the 

exact mathematical description of the objects is either absent or varies widely. In such conditions, the 

incompleteness of information about the mathematical model imposes a significant limitation on the methods used 

for the synthesis of models and controls. One of the decisive steps in the identification process is the choice of the 

class of mathematical objects in which a representative is selected that is most suitable for some criterion of a real 

simulated dynamic system [1-11]. Since one of the main directions of the practical use of models is predicting the 

output signals of a real technological system, it is natural, when assessing the quality of conformity of a model to a 

real object, to take the result of comparing their outputs as a criterion for conformity. 

II. FORMULATION OF THE PROBLEM 
Consider a linear discrete dynamical system described by the equation 
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where y (t), u (t) are state and control vectors of dimension piAml i ...,,1,0,);1,(),1,( = , qjB j ...,,1,0, =

.The functioning of the system is carried out for Nt ...,,2,1,0= based on management 

)1(u...,),1(u),0(u −N ; initial states are set p)(,...1),((0), −− yyy and initial management )(u...,),1(u q−− .  

To solve the identification problem, difference vectors are written ∆(t, у, v, А, В) 
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and the functional is formed q(у, v, A, B) [2,3] 
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It can be seen that (2) is a quadratic form of the elements of the matrices Ai, Bj and is a system of linear 

equations. 

We use the following notation: 

111,...,,1),( ++++== qpNNit MMiϕ , 

),()(...,),1()(),()( 121 ptyttyttyt p −=−== +ϕϕϕ  

1)(),()(...,),()( 22 =−== +++ tqtvttvt
MNqpp ϕϕϕ . 

Introducing the notation 1),(),()( 321 === ϕϕϕ tvtyt дляp = q = 0, NM = 3 you can write the following 

expressions: 
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Given (3) and based on the structure of functional (2), we can write the following expressions for the matrices 

jiG , и Mi NjiD ...,,1,, = : 
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Then one can form block matrices G, D,andX as follows [3]: the matrix Gis composed of 2
MN matrices T

jiG , ; 

matricesD is made up of MN matrices T
iD , located by column; matrix Xcomposed of MN matrices 

T
q

TT
p

T BBAA ...,,,...,, 00 , disposable column. Matrices G, D, Xhave dimensions ),(),,(),,( lNlNNN qpqpqpqp , 

where 1)1()1( ++++= qmplNqp . 
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Thus, the identification algorithm in this case is reduced to finding matrices iji DG ,~, on  formulas(4); the 

formation of block matrices G, D (5); calculating the matrix parameters of the system forming the block matrix X, 

based on the solution of the matrix system 

GX=D, 

decaying into l systems of dimension qpN :  

lkdGx kk ,...,2,1, == .      (6) 

III. DECISION BASED ON THE REGULAR METHOD 
The system of equations (6) can be poorly conditioned, i.e. small changes to the source data may respond to large 

changes to the solution. The aforementioned circumstance when solving equation (6) leads to the necessity of using 

regularization methods [9, 12, 13]. 

In addition, in practical problems, elements, for example, matrices, are often known to us approximately. In these 

cases, instead of a matrix, we are dealing with some other matrix G~ such that hGG ≤−
~

, where the meaning of 

the norms is usually determined by the nature of the task. Having instead of matrix G matrix G~ , all the more so, we 

cannot make a definite judgment on the degeneracy or non-degeneracy of the matrix G . But such matrices G~

infinitely many, and within the framework of the level of error known to us, they are indistinguishable. Among such 

“possible exact systems” there may be degenerate ones. 

To give numerical stability to the matrix inversion procedure, it is advisable to use the concepts of regular and 

stable estimation methods [12, 13]. Below is an algorithm for estimating the inverse matrix 1−G in equation (6). 
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Let the matrix njigG ij ...,,2,1,],[ == , non-degenerate. Denote by kG its upper left part, i.e.. 

kjigG ijk ...,,2,1,],[ == . Matrices nkGk ...,,2,1, = , non-degenerate. We represent them in the form 
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Following [14,15] of the bordering method, the inverse matrix can be written in the following form
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Performing calculations by formulas (7) at, we can obtain 11 −− = GGn . 

In the case under consideration, it is advisable to use the Gauss method [14,16-18] to invert the matrix, according 

to which a sequence of matrices is constructed GGkG k == )0()( ...,,1,0, , on 
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kG  – обратимая матрица размера kk × . 

Для этого на k-м шаге у имеющейся клетки )(
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If ετ ≤)(k
sg , then the factorization process is terminated and non-orthogonal matrix factorization is 

determinedGin the form 
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The approximation for a pseudoinverse matrix is constructed in this way [13,17]: 
+++ = kk URGε .      (8) 

Calculation +R and +U in (8) when R and TU accordingly, upper trapezoidal matrices are effectively carried out 

by orthogonal factorization SPR = using Givens or Householder transformations [15,17], whereS – lower 

triangular square, P – orthogonal matrix. Then 1−+ = SPR T . 

IV. Conclusion 
The presented regularized identification algorithms based on non-orthogonal factorizations and pseudoinversions 

of square matrices increase the accuracy of estimating the parameters of the class of dynamic control objects under 

consideration and predicting the output variables of a real technological system. 
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