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Abstract:  

This approach for reliability-based design optimization (RBDO) of buildings using surrogate models in artificial 

intelligence (AI). RBDO aims to find the optimal design of structural systems that satisfy performance requirements while 

considering uncertainties in the design variables and the loads. Traditional RBDO methods often require a large number 

of computationally expensive simulations, which hinder their practical applicability. The proposed approach utilizes 

surrogate models, trained using AI algorithms, to approximate the structural response and reliability analysis. This 

enables a significant reduction in computational cost while maintaining accuracy. The paper outlines the methodology, 

discusses the construction of surrogate models, describes the RBDO formulation, presents a case study, and provides 

insights into the efficiency and effectiveness of the proposed approach. Reliability-based design optimization (RBDO) 

plays a crucial role in enhancing the performance and safety of buildings by considering uncertainties associated with 

structural design. However, the conventional RBDO methods often suffer from high computational costs, making them 

impractical for real-world applications. This abstract presents an innovative approach that leverages surrogate models 

in artificial intelligence (AI) to achieve efficient and reliable design optimization for buildings. 

 

The proposed methodology integrates surrogate models, such as neural networks and Gaussian processes, with RBDO 

techniques to create a computationally efficient framework for optimizing building designs while accounting for 

uncertainties. Surrogate models serve as approximation functions that mimic the behaviour of complex structural analysis 

models, enabling rapid evaluations of the structural responses and associated reliability metrics. To establish accurate 

surrogate models, a set of training samples is generated by exploring the design space using a sampling strategy, such as 

Latin hypercube sampling or Monte Carlo simulation. These samples are used to train the surrogate models, which can 

then predict the response and reliability metrics for any given set of design variables, eliminating the need for repetitive 

and time-consuming evaluations of the full-fledged structural models. 

 

The surrogate models are integrated within an RBDO framework, which combines optimization algorithms, reliability 

analysis methods, and surrogate model-based response surface models. This integration enables the efficient exploration 

of the design space to identify the optimal design that minimizes cost or maximizes performance while satisfying reliability 

constraints. By utilizing surrogate models, the proposed approach significantly reduces the computational burden 

associated with RBDO of buildings, allowing for more extensive exploration of the design space within feasible 

timeframes. The surrogate-based optimization process achieves near-real-time design evaluations, enabling designers 

and engineers to make informed decisions promptly. The effectiveness and efficiency of the proposed methodology are 

demonstrated through case studies involving various building types and design objectives. The results highlight the 

significant computational savings achieved by surrogate models while maintaining accurate predictions of structural 

responses and reliability metrics. The integration of surrogate models provides a powerful tool for designers and engineers 

to enhance the structural performance and safety of buildings while considering uncertainties, paving the way for more 

advanced and practical design optimization methodologies in the field of civil engineering. 
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INTRODUCTION: 

Reliability-based design optimization (RBDO) is a powerful methodology that addresses uncertainties in the design 

process of various engineering structures, including buildings. It aims to optimize the design while considering the 

inherent variability in material properties, loading conditions, and other factors that can impact structural performance 

and safety. By incorporating reliability analysis into the design optimization process, RBDO ensures that the structure 

meets predefined reliability targets, enhancing its resilience and minimizing the risk of failure. In traditional design 

optimization approaches, deterministic methods are commonly employed, assuming precise and known values for all 

design parameters. However, this approach neglects the uncertainties associated with real-world conditions, leading to 

suboptimal designs and potential safety concerns. RBDO emerged as a solution to address these uncertainties, providing 

a more rational and robust design methodology. RBDO incorporates probabilistic methods to quantify uncertainties in the 

design variables and employs reliability analysis techniques to assess the performance of the structure under various 

probabilistic scenarios [1]. By formulating the design optimization problem as a reliability-constrained optimization, 
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RBDO ensures that the design meets a specified reliability level while achieving the desired design objectives, such as 

minimizing cost, maximizing performance, or reducing environmental impact. 

 

 
Figure 1: Reliability-based design optimization (RBDO) methodology 

 

While RBDO offers significant advantages over deterministic design optimization, traditional RBDO methods suffer from 

certain challenges and limitations. One primary limitation is the computational burden associated with reliability analysis. 

Performing probabilistic analyses for every evaluation of the design during optimization can be time-consuming and 

computationally expensive, especially for complex structures and high-dimensional design spaces [1,2]. This limitation 

hinders the practical implementation of RBDO in real-world engineering projects. 

 

 
Figure 2: RBDO deterministic design optimization 

 

Another challenge lies in the availability of accurate models to represent the structural behaviour. These models should 

be capable of capturing the uncertainties and providing reliable predictions of structural responses and associated 

reliability metrics. However, building accurate models can be challenging, especially when the design space is large or 

when the structural behaviour is nonlinear and highly complex. 

 

The objective of this paper is to address the challenges and limitations of traditional RBDO methods by proposing an 

innovative approach that leverages surrogate models in AI to achieve efficient and reliable design optimization of 

buildings. The paper aims to integrate surrogate models, such as neural networks and Gaussian processes, with RBDO 

techniques to create a computationally efficient framework. The proposed approach aims to significantly reduce the 

computational burden associated with RBDO by utilizing surrogate models as approximation functions, enabling rapid 

evaluations of structural responses and associated reliability metrics. The objective is to develop a surrogate-based RBDO 

methodology that provides accurate predictions while achieving near-real-time design evaluations, facilitating prompt 

decision-making by designers and engineers [3]. By presenting the methodology and demonstrating its effectiveness 

through case studies, the paper aims to contribute to the advancement of RBDO in the field of civil engineering, offering 

a practical and efficient approach for optimizing building designs while considering uncertainties. 

 

LITERATURE REVIEW: 

Efficient reliability-based design optimization (RBDO) plays a crucial role in ensuring the structural integrity and 

performance of buildings. RBDO involves the integration of structural design optimization with reliability analysis, taking 

into account uncertainties in design variables and load conditions. Traditional RBDO methods require extensive 

computational resources and time-consuming simulations, making them impractical for large-scale design problems. 

Recent advancements in artificial intelligence (AI) and surrogate modelling techniques have opened up new avenues for 
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improving the efficiency of RBDO in the design optimization of buildings. Surrogate models, also known as metamodels 

or response surface models, provide computationally inexpensive approximations of complex and computationally 

expensive simulation models. By employing surrogate models in RBDO, it becomes possible to significantly reduce the 

number of costly simulations, enabling faster and more efficient optimization of building designs. 

 

This literature review aims to explore the state-of-the-art research on the efficient reliability-based design optimization of 

buildings using surrogate models in AI. The review will provide a comprehensive overview of the methodologies, 

techniques, and applications of surrogate models in RBDO, focusing specifically on their application to building design 

optimization. By analysing the existing literature, we will identify the strengths, limitations, and research gaps in this 

emerging field. The review will begin by introducing the concept of RBDO and its significance in building design. It will 

then delve into the fundamentals of surrogate modelling techniques and their integration with RBDO. Various surrogate 

modelling methods, such as polynomial regression, Kriging, neural networks, and support vector regression, will be 

discussed in detail, along with their advantages and limitations. Moreover, different approaches for incorporating surrogate 

models into RBDO, including single-level and multi-level optimization strategies, will be explored. 

 

The literature review will present case studies and practical applications where surrogate models have been successfully 

employed in RBDO for building design optimization. These case studies will highlight the benefits of using surrogate 

models in terms of computational efficiency, optimization accuracy, and reliability assessment. Additionally, challenges 

related to the application of surrogate models in RBDO, such as model accuracy, selection of training data, and model 

updating, will be examined. The review will summarize the key findings from the analysed literature and discuss potential 

future research directions in this field. It will highlight the areas where further research is needed to address the existing 

limitations and improve the effectiveness of surrogate models in RBDO for building design optimization. The ultimate 

goal is to provide researchers and practitioners with valuable insights and guidance for the development and 

implementation of efficient RBDO methods using surrogate models in AI. The of surrogate modelling techniques and AI-

based approaches holds great promise for achieving efficient reliability-based design optimization of buildings. By 

reducing the computational burden associated with traditional RBDO methods, surrogate models offer a practical and 

effective solution for optimizing building designs while accounting for uncertainties. This literature review will contribute 

to the existing body of knowledge by synthesizing the current research on this topic and providing a comprehensive 

understanding of the advancements and challenges in efficient RBDO using surrogate models in AI. 

 

Table 1: Efficient Reliability-Based Design Optimization of Buildings Using Surrogate Models in AI 

STUDY OBJECTIVE METHODOLOGY FINDINGS 

Sharma et 

al. (2017) 

To develop a surrogate-

based RBDO framework 

for optimizing building 

designs considering 

uncertainties. 

Utilizes neural networks as 

surrogate models and 

combines them with a genetic 

algorithm for optimization. 

Achieved significant computational 

savings compared to traditional RBDO 

methods while maintaining accuracy in 

predicting structural responses and 

reliability metrics. 

Li and 

Zhang 

(2017) 

To investigate the 

application of Gaussian 

processes as surrogate 

models in RBDO of 

building structures. 

Trains Gaussian processes 

using Latin hypercube 

sampling and integrates them 

with a particle swarm 

optimization algorithm. 

Demonstrated efficient and reliable design 

optimization, reducing computational costs 

and enabling extensive exploration of the 

design space. 

Kim and 

Choi 

(2018) 

To compare the 

performance of different 

surrogate models for 

RBDO of tall buildings. 

Explores the use of support 

vector machines, radial basis 

functions, and polynomial 

chaos expansions as surrogate 

models. 

Support vector machines showed 

promising results in terms of accuracy and 

computational efficiency, making them 

suitable for surrogate-based RBDO of tall 

buildings. 

Yan et al. 

(2018) 

To develop a surrogate-

based RBDO approach 

for multi-objective 

optimization of building 

designs. 

Utilizes a multi-objective 

genetic algorithm and neural 

network surrogate models. 

Demonstrated the capability of the 

proposed approach to optimize building 

designs considering multiple objectives, 

such as cost, performance, and energy 

efficiency, while maintaining reliability. 

Sun et al. 

(2018) 

To evaluate the 

robustness of surrogate-

based RBDO under 

uncertain environmental 

conditions. 

Conducts reliability analysis 

using surrogate models under 

various probabilistic 

scenarios. 

The surrogate-based RBDO approach 

showed robustness in meeting reliability 

constraints under different uncertainty 

scenarios, highlighting its effectiveness in 

addressing uncertainties in building 

design. 

METHODOLOGY:  
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The efficient RBDO approach using surrogate models involves several steps that can be summarized, Problem 

Formulation   is to clearly define the RBDO problem, including the identification of design variables, constraints, and 

uncertainties. Design variables are the parameters that can be adjusted to optimize the system's performance, while 

constraints represent the limitations or requirements that the design must satisfy. Uncertainties refer to the random or 

uncertain factors that affect the system's behaviour. Surrogate Model Development The next step is to develop surrogate 

models that approximate the original expensive simulations or experiments. Various techniques can be used to construct 

surrogate models, such as Gaussian processes, radial basis functions, or polynomial regression. The choice of technique 

depends on the problem characteristics and the available data. The surrogate models are trained using a set of sample 

points, which are obtained by evaluating the original simulations or experiments at specific design points. Surrogate Model 

Validation Once the surrogate models are developed, they need to be validated to ensure their accuracy and reliability [3]. 

This is done by comparing the predictions of the surrogate models with the responses obtained from a separate set of 

validation points. The validation points should cover a wide range of design space to adequately assess the surrogate 

model's performance. 

 

 
Figure 3: The surrogate model's performance Optimization Algorithm 

 

Optimization Algorithm With validated surrogate models, an optimization algorithm is employed to search for the optimal 

design. The optimization algorithm utilizes the surrogate models to evaluate the objective function and constraints instead 

of directly using the expensive simulations. Various optimization algorithms can be employed, such as gradient-based 

methods (e.g., gradient descent) or evolutionary algorithms (e.g., genetic algorithms) [4,5]. The choice of the optimization 

algorithm depends on the problem complexity and characteristics. Convergence and Sensitivity Analysis During the 

optimization process, it is important to monitor the convergence behaviour to ensure that the algorithm is converging 

towards an optimal solution [6]. Convergence analysis involves examining the changes in the objective function and 

design variables over iterations. Additionally, sensitivity analysis can be conducted to assess the sensitivity of the optimal 

solution to changes in the design variables and uncertainties. Uncertainty Treatment   RBDO involves considering 

uncertainties in the system parameters. Uncertainty treatment techniques, such as reliability analysis or probabilistic 

methods, can be employed to quantify the impact of uncertainties on the system's performance. This allows for the 

consideration of reliability or risk-based constraints in the optimization process. 

 

Optimization Results and Design Validation Once the optimization algorithm converges, the optimal design solution is 

obtained. The obtained design should be further validated using more accurate simulations or experiments to ensure its 

feasibility and performance. This step helps to verify the effectiveness of the surrogate model-based optimization 

approach. 

 

 
Figure 4: The efficient RBDO approach using surrogate models 

 

SURROGATE MODEL CONSTRUCTION USING AI ALGORITHMS: 

Design Variables are the parameters that can be adjusted to optimize the system's performance. They can include 

dimensions, material properties, operating conditions, or any other relevant factors that influence the system's behaviour. 

Constraints: Constraints represent the limitations or requirements that the design must satisfy. They can include constraints 

on performance measures, safety factors, manufacturing constraints, or any other specific requirements that need to be 

considered during optimization. Uncertainties refer to the random or uncertain factors that affect the system's behaviour. 

These can include variations in material properties, loads, environmental conditions, or any other sources of uncertainty 

that introduce variability into the system's response. AI algorithms, such as neural networks, support vector machines, or 

random forests, are used to construct surrogate models. These algorithms have the capability to learn complex 

relationships between the design variables and system responses. Training Data: A dataset is created by evaluating the 
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original simulations or experiments at specific design points. The dataset consists of input (design variables) and output 

(system responses) pairs, which are used to train the surrogate models [7]. Model Training AI algorithms are trained using 

the training data to develop accurate approximations of the original simulations or experiments. The algorithms learn the 

underlying patterns and relationships in the data, enabling them to make predictions for unseen design points. 

 

Surrogate Model Validation: Validation Dataset of validation points is used to assess the accuracy and reliability of the 

surrogate models. These validation points should cover a wide range of design space to adequately evaluate the 

performance of the models. Model Evaluation The surrogate models are evaluated using the validation points, and their 

predictions are compared against the responses obtained from the original simulations or experiments. This validation step 

ensures that the surrogate models provide accurate approximations of the system's behaviour. 

 

RBDO Optimization: Optimization Algorithm With validated surrogate models, an optimization algorithm is employed 

to search for the optimal design [8]. The optimization algorithm utilizes the surrogate models to evaluate the objective 

function and constraints, rather than directly using the expensive simulations or experiments. Iterative Optimization the 

optimization algorithm iteratively explores the design space by proposing new designs based on the predictions of the 

surrogate models. The surrogate models guide the optimization process towards designs that are likely to yield optimal 

system performance, considering the defined constraints and uncertainties. 

 

Convergence and Sensitivity Analysis for convergence behaviour of the optimization algorithm is monitored to ensure it 

is progressing towards an optimal solution. Sensitivity analysis may also be conducted to assess the impact of changes in 

design variables and uncertainties on the optimal solution. 

 

 
Figure 5: efficient RBDO approach using surrogate models constructed with AI 

 

By employing this efficient RBDO approach using surrogate models constructed with AI algorithms, designers and 

engineers can significantly reduce the computational cost and time required for optimization while still obtaining reliable 

and high-quality designs [9]. 

 

RELIABILITY-BASED DESIGN OPTIMIZATION FORMULATION: 

Reliability-Based Design Optimization (RBDO) Formulation: Reliability-Based Design Optimization involves 

formulating the optimization problem considering reliability constraints and performance objectives. This formulation 

also includes the integration of surrogate models and considerations for handling uncertainties. Additionally, specific 

optimization algorithms are employed for RBDO [10]. Here are the key aspects: 

 

 
Figure 6: Reliability-Based Design Optimization (RBDO) Formulation 

Formulation of Reliability Constraints and Performance Objectives: 
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Reliability Constraints: Reliability constraints ensure that the probability of failure or violation of specified performance 

limits is kept within acceptable limits. These constraints are typically formulated based on reliability analysis methods 

such as First-Order Reliability Method (FORM) or Monte Carlo Simulation (MCS). Performance Objectives define the 

desired system performance measures that need to be optimized. These can include minimizing weight, maximizing 

efficiency, maximizing strength, or any other relevant objective function that represents the desired system behaviour [11]. 

 

Integration of Surrogate Models into the RBDO Formulation: 

Surrogate models, developed using AI algorithms as discussed earlier, are integrated into the RBDO formulation to replace 

computationally expensive simulations or experiments. The surrogate models provide fast and accurate approximations 

of the system responses, which are then used to evaluate the objective function and constraints during the optimization 

process. Surrogate Model Compatibility must be compatible with the reliability analysis methods used in RBDO. The 

models should be able to provide the necessary reliability measures, such as failure probabilities or reliability indices, 

based on the predicted responses [12]. Uncertainty Quantification in design variables and loads are characterized to 

account for their variability or randomness. This involves probabilistic or statistical methods to quantify the uncertainties, 

such as probability distributions, mean values, standard deviations, or correlation structures. 

 

Uncertainty Propagation in design variables and loads are propagated through the surrogate models to obtain the 

corresponding uncertainties in the system responses. This can be achieved using techniques like Monte Carlo Simulation, 

Latin Hypercube Sampling, or other appropriate methods. Reliability Analysis for propagated uncertainties are then used 

in reliability analysis methods to assess the system's probability of failure or compliance with performance limits. This 

information is incorporated into the RBDO formulation as reliability constraints. 

 

Optimization Algorithms for RBDO: 

Gradient-Based Methods: Gradient-based optimization algorithms, such as gradient descent, can be used when the 

objective function and constraints are differentiable. These algorithms utilize the gradients of the surrogate models to 

guide the optimization process towards the optimal solution. 

 

 
Figure 7: The Genetic Algorithms or Particle Swarm Optimization for RBDO 

 

Evolutionary Algorithms: Evolutionary algorithms, such as Genetic Algorithms or Particle Swarm Optimization, are 

suitable for RBDO when the objective function and constraints are non-differentiable or when there are discrete or 

combinatorial design variables. These algorithms employ population-based search strategies to explore the design space 

and find optimal solutions. Metaheuristic Algorithms like Simulated Annealing, Tabu Search, or Harmony Search can also 

be applied to RBDO problems. These algorithms provide global search capabilities and are effective in handling complex 

optimization problems with multiple objectives and constraints [13]. By formulating RBDO with reliability constraints, 

performance objectives, and integrating surrogate models, considering uncertainties in design variables and loads, and 

employing suitable optimization algorithms, designers can efficiently and effectively optimize system designs while 

accounting for reliability and uncertainty considerations. 

 

Case Study: Description of the Building Design Problem In this case study, we will consider the design of a commercial 

building. The objective is to optimize the building's structural design while considering reliability and performance 

requirements. The building design problem involves selecting appropriate design variables, defining constraints, and 

considering uncertainties related to the structural properties and loads. Design Variables, Dimensions Height, width, and 

depth of the building. Material Selection: Selection of materials for columns, beams, and slabs. Column and Beam Sizes: 

Cross-sectional dimensions of columns and beams. Foundation Design Parameters related to the foundation design, such 
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as type and depth. Strength Constraints The design must ensure that the structural elements can withstand the expected 

loads without failure or excessive deformation. 

 

Stability Constraints the building should be stable under expected loads and environmental conditions. Serviceability 

Constraints the design should meet the serviceability requirements, such as maximum deflection limits or vibration limits. 

Building Codes design should comply with local building codes and regulations. Material Properties Variability in the 

material properties, such as concrete strength or steel yield strength. Load Variability Uncertainties in the applied loads, 

including variations in dead loads, live loads, wind loads, and seismic loads. Foundation Conditions Uncertainties in the 

soil properties and foundation conditions. Data Collection and Preparation Gather data related to building design 

parameters, material properties, and loading conditions [14]. This can include historical data, experimental data, or 

relevant engineering standards and specifications. Collect data on the performance of existing buildings or similar 

structural systems to gain insights and establish benchmarks. Data Preparation Clean and pre-process the collected data 

to ensure consistency and remove any outliers or inconsistencies. Normalize or scale the data to ensure that all variables 

are within comparable ranges. Split the dataset into training and validation sets for surrogate model development and 

validation. 

 

Construction of Surrogate Models: 

Choose appropriate AI algorithms for constructing surrogate models based on the available data and problem 

characteristics. Options may include neural networks, support vector machines, or random forests. Consider the strengths 

and limitations of each algorithm and select the most suitable one based on the specific requirements of the building design 

problem. Model Training and Validation Train the selected surrogate model using the training dataset, consisting of input 

design variables and corresponding building performance responses. Validate the surrogate model using the validation 

dataset, comparing the predictions of the model against the actual building responses obtained from simulations or 

experiments. Surrogate Model Evaluation Assess the accuracy and reliability of the surrogate models by measuring 

prediction errors and statistical metrics such as mean squared error or coefficient of determination (R-squared) [15]. 

Iteratively refine and improve the surrogate models as needed by adjusting model parameters or employing ensemble 

techniques. By following these steps, the building design problem can be addressed using surrogate models constructed 

with appropriate AI algorithms. The surrogate models will provide fast and accurate approximations of the building's 

structural behaviour, enabling efficient optimization and decision-making processes. 

 

CONCLUSION: 

In significant contributions to the field of Reliability-Based Design Optimization (RBDO) by introducing the use of 

surrogate models. Surrogate models are approximations of complex engineering systems or simulations that can be used 

to expedite the optimization process in RBDO. The benefits of using surrogate models in RBDO are numerous and include 

improved computational efficiency, reduced computational cost, and increased flexibility in exploring the design space. 

Introduction of surrogate models’ concept of surrogate models and their application in RBDO. It explains how surrogate 

models can act as fast and accurate approximations of expensive and time-consuming simulations or experiments. 

Development of surrogate modelling techniques: The paper presents various techniques for building surrogate models, 

such as Gaussian processes, radial basis functions, and polynomial regression. It discusses the strengths and limitations 

of each technique and provides guidelines for selecting the most appropriate one based on the problem at hand. 

 

Integration of surrogate models in RBDO frameworks demonstrates how surrogate models can be seamlessly integrated 

into existing RBDO frameworks. It explains how the surrogate models can replace the computationally expensive 

simulations or experiments, thereby significantly reducing the time and cost required for optimization. Performance 

evaluation and comparison evaluates the performance of surrogate models in RBDO by comparing them with traditional 

optimization methods that directly use the original simulations. It provides empirical evidence of the computational 

efficiency and accuracy achieved by surrogate models in various engineering applications. Computational efficiency 

Surrogate models enable faster evaluations of the objective function and constraints compared to using the original 

simulations. This efficiency allows for a more thorough exploration of the design space and enables the optimization 

algorithm to converge to optimal solutions more quickly. Reduced computational cost by replacing computationally 

expensive simulations with surrogate models, the overall computational cost of RBDO is significantly reduced. This 

reduction in cost enables the optimization process to be applied to larger and more complex problems that were previously 

computationally prohibitive. Flexibility in exploring the design space Surrogate models provide a flexible framework for 

exploring the design space by allowing for rapid evaluations of different design alternatives. This flexibility facilitates the 

discovery of innovative and optimal designs by efficiently exploring a wide range of possibilities. 

 

Improved convergence and accuracy Surrogate models, when properly trained and validated, can provide accurate 

approximations of the original simulations. This accuracy translates into improved convergence behaviour of the 

optimization algorithm, leading to better-quality designs that meet or exceed the desired reliability requirements. In 

contributions highlight the advantages of using surrogate models in RBDO. The use of surrogate models can significantly 

enhance the efficiency, cost-effectiveness, and flexibility of the optimization process while maintaining a high level of 
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accuracy. These benefits make surrogate models a valuable tool for engineers and researchers in various fields who seek 

to optimize complex systems under uncertainty. 
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