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Abstract 

By using notions of compatibility, weak compatibility and commutativity, Goyal ([5], [6]) prove some common fixed point 

theorems for six mappings involving rational contractive conditions in complete metric spaces. In this paper , we prove a 

common fixed point theorem for three pairs of weakly compatible mappings in complete metric spaces satisfying a rational 

inequality without any continuity requirement which generalize several previously known results due to Imdad and Ali 

[12], Goyal [5], Imdad-Khan [13], Jeong-Rhoades [7] and others. 
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1. INTRODUCTION AND PRELIMINARIES:  

 

In recent years several definitions of conditions weaker than commutativity have appeared which facilitated significantly 

to extend the Jungck’s theorem and several others. Foremost among them is perhaps the weak commutativity condition 

introduced by Sessa [17] which can be described as follows: 

 

1.1 Definition:  

Let S and T be mappings of a metric space (X, d) into itself. Then (S, T) is said to be weakly commuting pair if 

( ) ( )SxTxdTSxSTxd ,,   for all Xx . 

obviously a commuting pair is weakly commuting but its converse need not be true as is evident from the following 

example. 

 

1.2 Example: 

Consider the set X = [0, 1] with the usual metric. Let 
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and so S and T commute weakly. 

Obviously, the class of weakly commuting is wider and includes commuting mappings as subclass. 

Jungck [9] has observed that for X = R if Sx = x3 and Tx = 2x3 then S and T are not weakly commuting. Thus it is desirable 

to a less restrictive concept which he termed as ‘compatibility’ the class of compatible mappings is still wider and includes 

weakly commuting mappings as subclass as is evident from the following definition of Jungek [9. 
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1.3 Definition: 

Two self mappingsS and T of a metric space (X, d) are compatible if and only if ( ) 0,lim =→ nnn TSxSTxd  whenever 

 nx  is a sequence in X. such that tTxSx nnnn == →→ limlim  for some Xt . 

Clearly any weakly commuting pair {S,T} in compatible but the converse need not be true as can be seen in the following 

example. 

 

1.4 Example: 

Let Sx = x3 and Tx = 2x3 with X = R with the usual metric. Then S and T are compatible,  

since 

03 →=− xSxTx  if and only if 

06 9 →=− xTSxSTx  but 

SxTxTSxSTx −−  is not true for all Xx , say for example at x = 1. 

 

1.5 Proposition: 

Let S and T be continuous self mapping on X. Then the pair (S, T) is compatible on X. where as in (Jungck [11], Gajic [4]) 

demonstrated by suitable examples that if S and T are discontinuous then the two concepts are independent of each other. 

The following examples also support this observation. 

 

1.6 Example: 

Let X = R with the usual metric we define S, T: X →X as follows. 
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Both S and T are discontinuous at x = 0 and for any sequence {xn} in X, we have d(STxn, TSxn) = 0. Hence the pair (S,T) 

is compatible.  

 

1.7 Example:  

Now we define 
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observe that the restriction of S and T on ( 1,−  are equal.  

Thus we take a sequence {xn} in (1, ∞). Then {Sxn} ( )   ( )0,11,0 − nTxand . Thus for every n, TTxn = 0, TSxn = 1, 

STxn = 0, SSxn =1. So that d (STxn, TTxn) = 0, d (TSxn, TTxn) = 0 for every Nn . This shows that the pair (S, T) is 

compatible of type (A). Now let xn = n, Nn . Then ,0→nTx 0→nSx ,0=→ nSTxandnas 1=nTSx

for every Nn  and so 

( ) 0, nn TSxSTxd as →n  hence the pair (S, T) is not compatible. 

Very recently concept of weakly compatible obtained by Jungck-Rhoades [8] stated as the pair of mappings is said to be 

weakly compatible if they commute at their coincidence point. 

 

1.8 Example: 

Let X = [2, 20] with usual metric define 
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S and T are weakly compatible mappings which is not compatible.  
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2. MAIN RESULTS: 

 

Let R+ be the set of non-negative real numbers and let F:R+→R+ be a mapping such that F(0) and F is continuous at 0. 

The following Lemma is the key in proving our result. Its proof is similar to that of Jungck [9]. 

 

2.1 Lemma: 

Let {yn} be a sequence in a complete metric space (X, d). If there exists a )1,0(k  such that 

),(),( 11 −+  nnnn yykyyd  for all n, then {yn} converges to a point in X. 

Motivated by the contractive condition given by, Jeong Rhoades [7] and Nesic [16 ]we prove the following theorem. 

 

Theorem 2.1: Let (𝑋, 𝑑) be a complete metric space. Let A, B, S, T, I and J be self-mappings of a complete metric space 

(𝑋, 𝑑) satisfying 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋 either  

𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤ 𝛽1 [
{𝑑(𝐴𝐵𝑥, 𝐼𝑥)}2 + {𝑑(𝑆𝑇𝑦, 𝐽𝑦)}2

𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)
] +𝛽2𝑑(𝐼𝑥, 𝐽𝑦) 

 +𝛽3[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)] 
 +𝐹(𝑚𝑖𝑛{𝑑2(𝐼𝑥, 𝐽𝑦), 𝑑(𝐼𝑥, 𝐴𝐵𝑥). 𝑑(𝐼𝑥, 𝑆𝑇𝑦), 𝑑(𝐽𝑦, 𝑆𝑇𝑦). 𝑑(𝐽𝑦, 𝐴𝐵𝑥)}) … (1) 

if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)≠0, 𝛽𝑖 ≥ 0 (𝑖 = 1,2,3) with at least one 𝛽𝑖 non zero and 2𝛽1+𝛽2+2𝛽3 < 1 

or,  𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0  if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦) = 0 … (2) 

If one of the 𝐴𝐵(𝑋), 𝑆𝑇(𝑋), 𝐽(𝑋) and 𝐼(𝑋) is a complete subspace of 𝑋, then  

(a) (AB, I) has a coincidence point  

(b) (ST, J) has a coincidence point 

 

Further, if the pairs (𝐴𝐵, 𝐼) and (𝑆𝑇, 𝐽) are coincidentally commuting (weakly compatible), then AB, ST, I and J have a 

unique common fixed point. Moreover, if the pairs (A,B), (A,I), (B,I), (S,T), (S,J) and (T,J) are commuting mappings then 

A, B, S, T, I and J have a unique common fixed point. 

 

Proof: Let 𝑥0 ∈ 𝑋 be an arbitrary point. Since 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), we can choose a point 𝑥1 in 𝑋 such that 𝐴𝐵𝑥0 = 𝐽𝑥1. 

Again, since 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋), we can choose a point 𝑥2 in 𝑋 with 𝑆𝑇𝑥1 = 𝐼𝑥2. Using this process repeatedly, we can 

construct a sequence {𝑧𝑛} such that  

𝑧2𝑛 = 𝐴𝐵𝑥2𝑛 = 𝐽𝑥2𝑛+1 and 𝑧2𝑛+1 = 𝑆𝑇𝑥2𝑛+1 = 𝐼𝑥2𝑛+2for 𝑛 = 0, 1, 2, … 

Now, we consider two cases 

 

Case I: If 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)≠0. Then on using inequality (1), we have 

𝑑(𝑧2𝑛+1 ,𝑧2𝑛+2) = 𝑑(𝑆𝑇𝑥2𝑛+1,𝐴𝐵𝑥2𝑛+2) 

  ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑥2𝑛+2,𝐼𝑥2𝑛+2)}2+{𝑑(𝑆𝑇𝑥2𝑛+1,𝐽𝑥2𝑛+1)}2

𝑑(𝐴𝐵𝑥2𝑛+2,𝐼𝑥2𝑛+2)+(𝑆𝑇𝑥2𝑛+1,𝐽𝑥2𝑛+1)
] +𝛽2𝑑(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1) 

 +𝛽3[(𝑑(𝐴𝐵𝑥2𝑛+2, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛+2)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑥2𝑛+2, 𝐽𝑥2𝑛+1 ), 

 𝑑(𝐼𝑥2𝑛+2, 𝐴𝐵𝑥2𝑛+2 ). 𝑑(𝐼𝑥2𝑛+2, 𝑆𝑇𝑥2𝑛+1), 

 𝑑(𝐽𝑥2𝑛+1 , 𝑆𝑇𝑥2𝑛+1 ). 𝑑(𝐽𝑥2𝑛+1 , 𝐴𝐵𝑥2𝑛+2)}] 

 ≤ 𝛽1
[𝑑(𝐴𝐵𝑥2𝑛+2 ,𝐼𝑥2𝑛+2) +𝑑(𝑆𝑇𝑥2𝑛+1 ,𝐽𝑥2𝑛+1)]

𝑑(𝐴𝐵𝑥2𝑛+2 ,𝐼𝑥2𝑛+2)+𝑑(𝑆𝑇𝑥2𝑛+1 ,𝐽𝑥2𝑛+1)

2

+𝛽2𝑑(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1) 

 +𝛽3[𝑑(𝐴𝐵𝑥2𝑛+2, 𝐽𝑥2𝑛+1) + 𝑑(𝑆𝑇𝑥2𝑛+1, 𝐼𝑥2𝑛+2)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑥2𝑛+2, 𝐽𝑥2𝑛+1), 

 𝑑(𝐼𝑥2𝑛+2, 𝐴𝐵𝑥2𝑛+2). 𝑑(𝐼𝑥2𝑛+2, 𝑆𝑇𝑥2𝑛+1), 

 𝑑(𝐽𝑥2𝑛+1, 𝑆𝑇𝑥2𝑛+1). 𝑑(𝐽𝑥2𝑛+1, 𝐴𝐵𝑥2𝑛+2)}] 
 ≤ 𝛽1[𝑑(𝐴𝐵𝑥2𝑛+2 , 𝐼𝑥2𝑛+2 )+ d(𝑆𝑇𝑥2𝑛+1 , 𝐽𝑥2𝑛+1 )] 
 +𝛽2𝑑(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1) 

 +𝛽3[𝑑(𝐴𝐵𝑥2𝑛+2 , 𝐽𝑥2𝑛+1 )+ d(𝑆𝑇𝑥2𝑛+1 , 𝐼𝑥2𝑛+2 )] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑥2𝑛+2 , 𝐽𝑥2𝑛+1 ), 

 𝑑(𝐼𝑥2𝑛+2 , 𝐴𝐵𝑥2𝑛+2 ). 𝑑(𝐼𝑥2𝑛+2 , 𝑆𝑇𝑥2𝑛+1), 

 𝑑(𝐽𝑥2𝑛+1 , 𝑆𝑇𝑥2𝑛+1 ). 𝑑(𝐽𝑥2𝑛+1 , 𝐴𝐵𝑥2𝑛+2)}] 
 ≤ 𝛽1[𝑑(𝑧2𝑛+2  , 𝑧2𝑛+1)+ d(𝑧2𝑛+1  , 𝑧2𝑛)]+𝛽2𝑑(𝑧2𝑛+1  , 𝑧2𝑛) 

 +𝛽3[𝑑(𝑧2𝑛+2, 𝑧2𝑛+1) + 𝑑(𝑧2𝑛+1, 𝑧2𝑛)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧2𝑛+1, 𝑧2𝑛), 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2). 𝑑(𝑧2𝑛+1 , 𝑧2𝑛+1 ), 
 𝑑(𝑧2𝑛, 𝑧2𝑛+1 ). 𝑑(𝑧2𝑛 , 𝑧2𝑛+2 )}] 
 ≤ (𝛽1+𝛽3) 𝑑(𝑧2𝑛+2  , 𝑧2𝑛+1)+ (𝛽1+𝛽2+𝛽3)𝑑(𝑧2𝑛 , 𝑧2𝑛+1) 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧2𝑛+1, 𝑧2𝑛),  
 𝑑(𝑧2𝑛+1, 𝑧2𝑛+2).0, 𝑑(𝑧2𝑛, 𝑧2𝑛+1). 𝑑(𝑧2𝑛, 𝑧2𝑛+2)}] 
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or,  𝑑(𝑧2𝑛+2  , 𝑧2𝑛+1) ≤ (
𝛽1+𝛽2+𝛽3

1-𝛽1-𝛽3
) 𝑑(𝑧2𝑛+1, 𝑧2𝑛) 

 +
1

(1−𝛽1−𝛽3)
𝐹[𝑚𝑖𝑛{𝑑2(𝑧2𝑛+1, 𝑧2𝑛), 

 0, 𝑑(𝑧2𝑛, 𝑧2𝑛+1). 𝑑(𝑧2𝑛, 𝑧2𝑛+2)}] 

 = (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛+1, 𝑧2𝑛)+

1

(1−𝛽1−𝛽3)
𝐹(0) 

or,  𝑑(𝑧2𝑛+1  , 𝑧2𝑛+2) ≤ (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛 , 𝑧2𝑛+1)+0 [∵ 𝐹(0) = 0] 

or,  𝑑(𝑧2𝑛+1  , 𝑧2𝑛+2) ≤ (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛 , 𝑧2𝑛+1) 

Following the same process, we can show that 

 𝑑(𝑧2𝑛 , 𝑧2𝑛+1) ≤ (
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
) 𝑑(𝑧2𝑛−1, 𝑧2𝑛) 

Thus, for every n, we can show that 

 𝑑(𝑧𝑛 , 𝑧𝑛+1) ≤ 𝛼𝑑(𝑧𝑛−1, 𝑧𝑛) … (3) 

Where 𝛼 =  
𝛽1+𝛽2+𝛽3

1−𝛽1−𝛽3
< 1 

Now, by induction  

 𝑑(𝑧𝑛 , 𝑧𝑛+1) ≤ 𝛼𝑑(𝑧𝑛−1  , 𝑧𝑛) 

 ≤ 𝛼2𝑑(𝑧𝑛−2  , 𝑧𝑛−1) 

 ⋮ 
 ≤ 𝛼𝑛𝑑(𝑧0 , 𝑧1) 

For any 𝑚 > 𝑛, we get,  

 𝑑(𝑧𝑛, 𝑧𝑚) ≤ 𝑑(𝑧𝑛 , 𝑧𝑛+1) + 𝑑(𝑧𝑛+1, 𝑧𝑛+2)+…+𝑑(𝑧𝑚−1, 𝑧𝑚) 

 ≤ [𝛼𝑛+𝛼𝑛+1+………+𝛼𝑚−1]𝑑(𝑧0 , 𝑧1) 

 ≤
𝛼𝑛

1−𝛼
𝑑(𝑧0 , 𝑧1) 

This implies that𝑑(𝑧n, 𝑧𝑚) → 0 as 𝑛, 𝑚 → ∞ 

Hence, sequence {𝑧𝑛} described by 

{𝐴𝐵𝑥0, 𝑆𝑇𝑥1, 𝐴𝐵𝑥2, … 𝑆𝑇𝑥2𝑛−1, 𝐴𝐵𝑥2𝑛 , 𝑆𝑇𝑥2𝑛+1, … } 

is a Cauchy sequence in a complete metric space (𝑋, 𝑑). Now, let 𝑆𝑇(𝑋) is a complete subspace of 𝑋, then the subsequence 

{𝑧2𝑛+1} which is contained in 𝑆𝑇(𝑋) also get a limit 𝑧 in 𝑆𝑇(𝑋) i.e.  

 lim
𝑛→∞

𝑆𝑇 𝑥2𝑛+1 = 𝑧 

 

Since, 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋), there exists a point 𝑧′ ∈ 𝑋 such that 𝐼𝑧’ = 𝑧. 

Again, as {𝑧𝑛} is a Cauchy sequence containing a convergent subsequence {𝑧2𝑛+1 }, therefore the sequence {𝑧𝑛} also 

converges which implies the convergence of {𝑧2𝑛} being a subsequence of the convergent sequence {𝑧𝑛} i.e. lim
𝑛→∞

𝐽 𝑥2𝑛+1𝑧. 

To prove that 𝐴𝐵𝑧′ = 𝑧 put 𝑥 = 𝑧′ and 𝑦 = 𝑥2𝑛−1 in (1), we get  

 𝑑(𝐴𝐵𝑧′, 𝑆𝑇𝑥2𝑛−1) ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧′,𝐼𝑧′)}2+{𝑑(𝑆𝑇𝑥2𝑛−1,𝐽𝑥2n−1)}2

𝑑(𝐴𝐵𝑧′,𝐼𝑧)+𝑑(𝑆𝑇𝑥2𝑛−1,𝐽𝑥2𝑛−1)
] +𝛽2𝑑(𝐼𝑧′, 𝐽𝑥2𝑛−1) 

 +𝛽3[𝑑(𝐴𝐵𝑧′, 𝐽𝑥2𝑛−1)+ d(𝑆𝑇𝑥2𝑛−1 ,𝐼𝑧′)] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧′, 𝐽𝑥2𝑛−1), 
 𝑑(𝐼𝑧′, 𝐴𝐵𝑧′). 𝑑(𝐼𝑧′, 𝑆𝑇𝑥2𝑛−1), 

 𝑑(𝐽𝑥2𝑛−1 ,𝑆𝑇𝑥2𝑛−1). 𝑑(𝐽𝑥2𝑛−1 , 𝐴𝐵𝑧′)}] 

on letting 𝑛 → ∞, above reduces to 

𝑑(𝐴𝐵𝑧′, 𝑧) ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧′, 𝑧)}2 + {𝑑(𝑧, 𝑧)}2

𝑑(𝐴𝐵𝑧′, 𝑧)  +  𝑑(𝑧, 𝑧)
] +𝛽2𝑑(𝑧, 𝑧)+𝛽3[𝑑(𝐴𝐵𝑧′, 𝑧)+ d(𝑧, 𝑧)] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑧) , 𝑑(𝑧, 𝐴𝐵𝑧′). 𝑑(𝑧, 𝑧), 𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝐴𝐵𝑧′)}] 
 ≤ 𝛽1𝑑(𝐴𝐵𝑧′, 𝑧)+𝛽3𝑑(𝐴𝐵𝑧′, 𝑧) 

 +𝐹[𝑚𝑖𝑛{0,𝑑(𝑧, 𝐴𝐵𝑧′). 0,0. 𝑑(𝑧, 𝐴𝐵𝑧′)}] 
 ≤ (𝛽1+𝛽3)𝑑(𝐴𝐵𝑧′, 𝑧) + 𝐹(0) 

or,  𝑑(𝐴𝐵𝑧′, 𝑧)  ≤ (𝛽1 + 𝛽3) 𝑑(𝐴𝐵𝑧′, 𝑧) [∵ 𝐹(0) = 0] 
 

which gives𝐴𝐵𝑧′ = 𝑧 [by using Remark (1.16)]. 

Thus, we get𝐴𝐵𝑧′ = 𝐼𝑧′ = 𝑧and result (a) is established i.e the pair (𝐴𝐵, 𝐼) has a coincidence point.  

Since 𝑧 is in the range of AB i.e. 𝐴𝐵𝑧′ = z and 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋) there always exists a point z" such that 𝐽𝑧" = z 

Now, 𝑑(𝑧, 𝑆𝑇𝑧") = 𝑑(𝐴𝐵𝑧′, 𝑆𝑇𝑧") 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧′,𝐼𝑧′)}

2
+{𝑑(𝑆𝑇z, Jz)}2

𝑑(𝐴𝐵𝑧′,𝐼𝑧′) + 𝑑(𝑆𝑇𝑧",𝐽𝑧")
] + 𝛽2𝑑(𝐼𝑧′, 𝐽z") 

 +𝛽3𝑑(𝐴𝐵𝑧′, 𝐽𝑧") + 𝑑(𝑆𝑇z", 𝐼𝑧′) 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧′, 𝐽z"), 𝑑(𝐼𝑧′, 𝐴𝐵𝑧′). 𝑑(𝐼𝑧′, 𝑆𝑇z"),  
 𝑑(𝐽z", 𝑆𝑇z"). 𝑑(𝐽z", 𝐴𝐵𝑧′)}] 
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 ≤ 𝛽1 [
{d(z,z)}2+{𝑑(𝑆𝑇z",𝑧)}2

𝑑(𝑧,𝑧) + 𝑑(𝑆𝑇z",𝑧)
] +𝛽2𝑑(𝑧, 𝑧) +𝛽3[𝑑(𝑧, 𝑧) +d(𝑆𝑇z", 𝑧)] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑧), 𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝑆𝑇z"), 𝑑(𝑧, 𝑆𝑇z"). 𝑑(𝑧, 𝑧)}] 
 ≤ (𝛽1+𝛽3) 𝑑(𝑧, 𝑆𝑇z") + 𝐹[𝑚𝑖𝑛{0,0, 0}] 
or,  𝑑(𝑧, 𝑆𝑇z") ≤ (𝛽1+𝛽3)𝑑(𝑧, 𝑆𝑇z") + 𝐹(0) 

or, 𝑑(𝑧, 𝑆𝑇z") ≤ (𝛽1+𝛽3) + 𝑑(𝑧, 𝑆𝑇z")[∵ 𝐹(0) = 0] 
which implies that 𝑆𝑇𝑧" = 𝑧 = 𝐽𝑧" i.e. the pair (𝑆𝑇, 𝐽) has a coincidence point. This establishes the result (b).  

If we assume that 𝐼(𝑋) is a complete subspace of 𝑋, then similar arguments establish results (a) and (b). The remaining 

two cases pertain essentially to the previous cases.  

Infact, if 𝑆𝑇(𝑋) is complete then 𝑧 ∈ 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) and if 𝐴𝐵(𝑋) is complete, then, 𝑧 ∈ 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋). 

 Thus, the results (a) and (b) are completely established. 

Furthermore, if the pairs (𝐴𝐵, 𝐼) and (𝑆𝑇, 𝐽) are coincidentally commuting at 𝑧′ and 𝑧" respectively then 

(i) 𝑧 = 𝐴𝐵𝑧′ = 𝐼𝑧′ = 𝑆𝑇𝑧" = 𝐽𝑧" 

(ii) 𝐴𝐵𝑧 = 𝐴𝐵(𝐼𝑧′) = 𝐼(𝐴𝐵𝑧′) = 𝐼𝑧 

(iii) 𝑆𝑇𝑧 = 𝑆𝑇(𝐽𝑧") = 𝐽(𝑆𝑇𝑧") = 𝐽𝑧 

 

Since, 𝑑(𝐴𝐵𝑧′, 𝐼𝑧′) + 𝑑(𝑆𝑇𝑧, 𝐽𝑧) = 0 

Therefore, by (2), we get 𝑑(𝐴𝐵𝑧′, 𝑆𝑇𝑧) = 𝑑(𝑧, 𝑆𝑇𝑧) = 0 

or, 𝑧 = 𝑆𝑇𝑧. 

Similarly, 𝑑(𝐴𝐵𝑧, 𝐼𝑧) + 𝑑(𝑆𝑇𝑧", 𝐽𝑧") = 0, therefore by (2), we get 

 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑧") = 𝑑(𝐴𝐵𝑧, 𝑧) = 0 

or, 𝑧 = 𝐴𝐵𝑧. 

Thus, 𝐴𝐵𝑧 = 𝐼𝑧 = 𝑆𝑇𝑧 = 𝐽𝑧 = 𝑧, which shows that 𝑧 is a common fixed point of AB, ST, I and J.  

To show that 𝑧 is unique, let 𝑢 be another fixed point of I, J, AB and ST. Then,  

  𝑑(𝑧, 𝑢) = 𝑑(𝐴𝐵𝑧, 𝑆𝑇𝑢) 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧,𝐼𝑧)}2

 +{𝑑(𝑆𝑇𝑢,𝐽𝑢)}2

𝑑(𝐴𝐵𝑧,𝐼𝑧) + 𝑑(𝑆𝑇𝑢,𝐽𝑢)
] +𝛽2𝑑(𝐼𝑧, 𝐽𝑢) 

 +𝛽3[𝑑(𝐴𝐵𝑧, 𝐽𝑢)+d(𝑆𝑇𝑢, 𝐼𝑧)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧, 𝐽𝑢), 𝑑(𝐼𝑧, 𝐴𝐵𝑧). 𝑑(𝐼𝑧, 𝑆𝑇𝑢), 

 𝑑(𝐽𝑢, 𝑆𝑇𝑢). 𝑑(𝐽𝑢, 𝐴𝐵𝑧)}] 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵𝑧,𝐼𝑧)+𝑑(𝑆𝑇𝑢,𝐽𝑢)}2

𝑑(𝐴𝐵𝑧,𝐼𝑧) + 𝑑(𝑆𝑇𝑢,𝐽𝑢)
] +𝛽2𝑑(𝐼𝑧, 𝐽𝑢) 

 +𝛽3[𝑑(𝐴𝐵𝑧, 𝐽𝑢) +d(𝑆𝑇𝑢, 𝐼𝑧)] +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧, 𝐽𝑢), 𝑑(𝐼𝑧, 𝐴𝐵𝑧). 𝑑(𝐼𝑧, 𝑆𝑇𝑢), 

 𝑑(𝐽𝑢, 𝑆𝑇𝑢). 𝑑(𝐽𝑢, 𝐴𝐵𝑧)}] 
 ≤ 𝛽1[𝑑(𝐴𝐵𝑧, 𝐼𝑧)+ d (𝑆𝑇𝑢, 𝐽𝑢)]+𝛽2𝑑(𝐼𝑧, 𝐽𝑢) 

 +𝛽3[𝑑(𝐴𝐵𝑧, 𝐽𝑢) +d(𝑆𝑇𝑢, 𝐼𝑧)] 
 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼𝑧, 𝐽𝑢), 𝑑(𝐼𝑧, 𝐴𝐵𝑧). 𝑑(𝐼𝑧, 𝑆𝑇𝑢), 
 𝑑(𝐽𝑢, 𝑆𝑇𝑢). 𝑑(𝐽𝑢, 𝐴𝐵𝑧)}] 
 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑢), 𝑑(𝑧, 𝑧). 𝑑(𝑧, 𝑢), 𝑑(𝑢, 𝑢). 𝑑(𝑢, 𝑧)}] 
 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) + 𝐹[𝑚𝑖𝑛{𝑑2(𝑧, 𝑢), 0, 0}] 
 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) + 𝐹(0) 

 ≤ (𝛽2+2𝛽3)𝑑(𝑧, 𝑢) [∵ 𝐹(0) = 0] 
yielding, thereby 𝑧 = 𝑢.  

 

Thus, 𝑧 is a unique common fixed point of AB, ST, I and J. 

Finally, we prove that 𝑧 is also a common fixed point A,B, S,T, I and J. For this, let both the pairs (AB, I) and (ST, J) 

have a unique common fixed point 𝑧. 

Then  𝐴𝑧 = 𝐴(𝐴𝐵𝑧) = 𝐴(𝐵𝐴𝑧) = 𝐴𝐵(𝐴𝑧) 

 𝐴𝑧 = 𝐴(𝐼𝑧) = I(Az) 

 𝐵𝑧 = 𝐵(𝐴𝐵𝑧) = 𝐵(𝐴(𝐵𝑧)) = 𝐵𝐴(𝐵𝑧) = 𝐴𝐵(𝐵𝑧) 

 𝐵𝑧 = 𝐵(𝐼𝑧) = 𝐼(𝐵𝑧) 

 

which shows that (AB, I) has common fixed points, which are 𝐴𝑧 and 𝐵𝑧. We get thereby, 𝐴𝑧 = 𝑧 = 𝐵𝑧 = 𝐼𝑧 = 𝐴𝐵𝑧, by 

virtue of uniqueness of common fixed point of pair (AB, I). 

Similarly, using the commutativity of (S,T), (S,J) and (T,J),  

 𝑆𝑧 = 𝑧 = 𝑇𝑧 = 𝐽𝑧 = 𝑆𝑇𝑧 can be shown. 

Now, to show that Az = Sz (Bz = Tz), we have 

 𝑑(𝐴𝑧, 𝑆𝑧) = 𝑑(𝐴(𝐵𝐴𝑧), 𝑆(𝑇𝑆𝑧)) = 𝑑(𝐴𝐵(𝐴𝑧), 𝑆𝑇(𝑆𝑧)) 

 ≤ 𝛽1 [
{𝑑(𝐴𝐵(𝐴𝑧),𝐼(𝐴𝑧))}

2
+{𝑑(𝑆𝑇(𝑆𝑧),𝐽(𝑆𝑧))}

2

𝑑(𝐴𝐵(𝐴𝑧),𝐼(𝐴𝑧))+𝑑(𝑆𝑇(𝑆𝑧),𝐽(𝑆𝑧))
] 
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 +𝛽2𝑑(𝐼(𝐴𝑧), 𝐽(𝑆𝑧)) 

 +𝛽3[𝑑(𝐴𝐵(𝐴𝑧), 𝐽(𝑆𝑧)) + 𝑑(𝐼(𝐴𝑧), 𝑆𝑇(𝑆𝑧))] 

 +𝐹[𝑚𝑖𝑛{𝑑2(𝐼(𝐴𝑧), 𝐽(𝑆𝑧)), 

 𝑑(𝐼(𝐴𝑧), 𝐴𝐵(𝐴𝑧)). 𝑑(𝐼(𝐴𝑧), 𝑆𝑇(𝑆𝑧)), 

 𝑑(𝐽(𝑆𝑧), 𝑆𝑇(𝑆𝑧)). 𝑑(𝐽(𝑆𝑧), 𝐴𝐵(𝐴𝑧))}] 

 which implies that 𝑑(𝐴𝑧, 𝑆𝑧) = 0 

(as 𝑑(𝐴𝐵(𝐴𝑧), 𝐼(𝐴𝑧)) + 𝑑(𝑆𝑇(𝑆𝑧), 𝐽(𝑆𝑧)) = 0), using condition (2), thereby we get 𝐴𝑧 = 𝑆𝑧. 

Similarly, 𝐵𝑧 = 𝑇𝑧can be shown.  

Hence, 𝑧 is a unique common fixed point of A, B, S, T, I and J. 

 

Case II: Let 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦) = 0 implies that 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0. Then we argue as follows: 

Here we show that if 𝑦𝑛 = 𝑦𝑛+1 for some 𝑛, then AB, ST, I and J have a common fixed point. 

Suppose that there exists as 𝑛 such that  𝑧𝑛 = 𝑧𝑛+1. Then also 𝑧𝑛+1 = 𝑧𝑛+2. 

For if, 𝑧𝑛+1 ≠ 𝑧𝑛+2, then from (3), with 𝑛 replaced by 𝑛 + 1, we get, 

 0 < 𝑑(𝑧𝑛+1, 𝑧𝑛+2) = 0 a contradiction, gives 𝑧𝑛+1 = 𝑧𝑛+2.  

Thus, 𝑧𝑛 = 𝑧𝑛+𝛼 for 𝛼 = 1,2, … 

If follows that there exists two points 𝑢1 and 𝑢2 such that 𝑣1 = 𝐴𝐵𝑢1 = 𝐼𝑢1 and 𝑣2 = 𝑆𝑇𝑢2 = 𝐽𝑢2. Since 𝑑(𝐴𝐵𝑢1, 𝐼𝑢1) +
𝑑(𝑆𝑇𝑢2, 𝐽𝑢2) = 0 then from (2), we get 

𝑑(𝐴𝐵𝑢1, 𝑆𝑇𝑢2) = 0 i.e 𝑣1 = 𝐴𝐵𝑢1 = 𝑆𝑇𝑢2 = 𝑣2 

Also, note that 𝐼𝑣1 = 𝐼(𝐴𝐵𝑢1) = 𝐴𝐵(𝐼𝑢1) = 𝐴𝐵𝑣1. 

Similarly, 𝐽𝑣2 = 𝐽(𝑆𝑇𝑢2) = 𝑆𝑇(𝐽𝑢2) = 𝑆𝑇𝑣2. 

Define𝑦1 = 𝐴𝐵𝑣1 , 𝑦2 = 𝑆𝑇𝑣2 

Since 𝑑(𝐴𝐵𝑣1, 𝐼𝑣1) + 𝑑(𝑆𝑇𝑣2, 𝐽𝑣2) = 0 it follows from (2) that  

 𝑑(𝐴𝐵𝑣1, 𝑆𝑇𝑣2) = 0 

or,  𝐴𝐵𝑣1 = 𝑆𝑇𝑣2 i.e 𝑦1 = 𝑦2.  

Thus 𝐴𝐵𝑣1 = 𝐼𝑣1 = 𝑆𝑇𝑣2 = 𝐽𝑣2 

But, 𝑣1 = 𝑣2, therefore AB, I, ST and J have a common coincidence point.  

Define 𝑢 = 𝐴𝐵𝑣1, which asserts that 𝑢 is also a common point of coincidence of AB, ST, I and J. If 𝐴𝐵𝑢 ≠ 𝐴𝐵𝑣1 =
𝑆𝑇𝑣1, then 𝑑(𝐴𝐵𝑢, 𝑆𝑇𝑣1) > 0 but since 𝑑(𝐴𝐵𝑢, 𝐼𝑢) + 𝑑(𝑆𝑇𝑣1, 𝐽𝑣1) = 0, it follows from (2) that (𝐴𝐵𝑢, 𝑆𝑇𝑣1) = 0, i.e 

𝐴𝐵𝑢 = 𝑆𝑇𝑣1  which is a contradiction. Therefore, 𝐴𝐵𝑢 = 𝐴𝐵𝑣1 = 𝑢 and 𝑢 is a common fixed point of AB, ST, I and J. 

The rest of the proof is identical to the case(I), hence it is omitted.  

This completes the proof. 

If we put 𝐹(𝑡) = 0 for all 𝑡 ∈ 𝑅+ in theorem (2.1), we obtain the following, which generalize the result of Imdad and Ali 

[12] in complete metric space for six mappings. 

 

Corollary 2.2. Let (𝑋, 𝑑) be a complete metric space. Let A, B, S, T, I and J be self-mappings of a complete metric space 

(𝑋, 𝑑) satisfying 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋 either  

 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤ 𝛽1 [
{𝑑(𝐴𝐵𝑥,𝐼𝑥)}2+{𝑑(𝑆𝑇𝑦,𝐽𝑦)}2

𝑑(𝐴𝐵𝑥,𝐼𝑥)+𝑑(𝑆𝑇𝑦,𝐽𝑦)
] +𝛽2𝑑(𝐼𝑥, 𝐽𝑦) 

 +𝛽3[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)] 
if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)≠0, 𝛽𝑖 ≥ 0 (𝑖 = 1,2,3) with at least one 𝛽𝑖 non zero and 2𝛽1+𝛽2+2𝛽3 < 1 

or,  𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦) = 0  if 𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦) = 0  

If one of the 𝐴𝐵(𝑋), 𝑆𝑇(𝑋), 𝐽(𝑋) and 𝐼(𝑋) is a complete subspace of 𝑋, then  

(a) (AB, I) has a coincidence point  

(b) (ST, J) has a coincidence point 

Further, if the pairs (𝐴𝐵, 𝐼) and (𝑆𝑇, 𝐽) are coincidentally commuting (weakly compatible), then AB, ST, I and J have a 

unique common fixed point. Moreover, if the pairs (A,B), (A,I), (B,I), (S,T), (S,J) and (T,J) are commuting mappings then 

A, B, S, T, I and J have a unique common fixed point. 

Putting 𝐴𝐵 = 𝐴, 𝑆𝑇 = 𝐵 in corollary (2.2), we obtain the following generalization of the result of Imdad and Ali [12] in 

complete metric space.  

 

Corollary 2.3:Let (𝑋, 𝑑) be a complete metric space.Let A, B, S and T be self-mappings of a complete metric space (𝑋, 𝑑) 

with 𝐴(𝑋) ⊂ 𝑇(𝑋)and 𝐵(𝑋) ⊂ 𝑆(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋 either  

 𝑑(𝐴𝑥, 𝐵𝑦) ≤ 𝛽1 [
{𝑑(𝐴𝑥,𝑆𝑥)}2+{𝑑(𝐵𝑦,𝑇𝑦}2

𝑑(𝐴𝑥,𝑆𝑥)+d(𝐵𝑦,𝑇𝑦)
] + 𝛽2 𝑑(𝑆𝑥, 𝑇𝑦) 

 +𝛽3[𝑑(𝐴𝑥, 𝑇𝑦) + 𝑑(𝐵𝑥, 𝑆𝑥)] 
If 𝑑(𝐴𝑥, 𝑆𝑥) + 𝑑(𝐵𝑦, 𝑇𝑦) ≠ 0, 𝛽𝑖 ≥  0 (𝑖 = 1,2,3) (with at least one 𝛽𝑖 non zero) and 2𝛽1 + 𝛽2 + 2𝛽3 < 1or 

𝑑(𝐴𝑥, 𝐵𝑦) = 0 whereever 

𝑑(𝐴𝑥, 𝑆𝑥) + 𝑑(𝐵𝑦, 𝑇𝑦) = 0. 

If one of 𝐴(𝑋), 𝐵(𝑋), 𝑆(𝑋) and 𝑇(𝑋)is a complete subspace of 𝑋, then  
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(a) (A,S) has a coincidence point  

(b) (B,T) has a coincidence point 

Further, if the pairs (A,S) and (B,T) are coincidentally commuting then A, B, S and T has a unique fixed point 𝑧. 

On the basis of the above corollary (2.2), we have the following result, whose proof is similar to that of corollary (2.2). 

 

Corollary 2.4: Let (𝑋, 𝑑) be a complete metric space. Let A, B, S, T, I and J be self-mappings of a complete metric space 

(𝑋, 𝑑) satisfying 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋), 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋.  

 𝑑(𝐴𝐵𝑥, 𝑆𝑇𝑦)≤ 𝛽1[𝑑(𝐴𝐵𝑥, 𝐼𝑥)+𝑑(𝑆𝑇𝑦, 𝐽𝑦)]+𝛽2𝑑(𝐼𝑥, 𝐽𝑦) 

 +𝛽3[𝑑(𝐴𝐵𝑥, 𝐽𝑦) + 𝑑(𝑆𝑇𝑦, 𝐼𝑥)] 
where 𝛽𝑖 ≥ 0, (𝑖 = 1,2,3) (with at least one 𝛽𝑖 non zero) and 2𝛽1+𝛽2+2𝛽3 < 1 

If one of the 𝐴𝐵(𝑋), 𝑆𝑇(𝑋), 𝐽(𝑋) and 𝐼(𝑋) is a complete subspace of 𝑋, then  

(a) (AB, I) has a coincidence point  

(b) (ST, J) has a coincidence point 

Further, if the pairs (AB, I) and (ST, J) are coincidentally commuting (weakly compatible), then AB, ST, I and J have a 

unique common fixed point.  

Moreover, if the pairs (A,B), (A,I), (B,I), (S,T), (S,J) and (T,J) are commuting mappings then A, B, S, T, I and J have a 

unique common fixed point. 

 

Proof: Since 
[𝑑(𝐴𝐵𝑥, 𝐼𝑥)]2 + [𝑑(𝑆𝑇𝑦, 𝐽𝑦)]2

𝑑(𝐴𝑥, 𝐹𝑥) + 𝑑(𝑆𝑦, 𝐺𝑦)
≤

[𝑑(𝐴𝐵𝑥, 𝐼𝑥) + 𝑑(𝑆𝑇𝑦, 𝐽𝑦)]2

𝑑(𝐴𝑥, 𝐹𝑥) + 𝑑(𝑆𝑦, 𝐺𝑦)
=  𝑑(𝐴𝐵𝑥, 𝐼𝑥)+ 𝑑(𝑆𝑇𝑦, 𝐽𝑦) 

Using above inequality in main Theorem (2.1), we get the corollary (2.4). 

Taking 𝐴𝐵 = 𝐴, 𝑆𝑇 = 𝐵, 𝐼 = 𝐽 = 𝑆 in corollary (2.4), we obtain the following result. 

 

Corollary 2.5: Let (𝑋, 𝑑) be a complete metric space. Let A, B and S be self-mappings of a complete metric space (𝑋, 𝑑) 

satisfying 𝐴(𝑋) ⊂ 𝑆(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋) such that for each 𝑥, 𝑦 ∈ 𝑋.  

 𝑑(𝐴𝑥, 𝐵𝑦)≤ 𝛽1[𝑑(𝐴𝑥, 𝑆𝑥)+𝑑(𝐵𝑦, 𝑆𝑦)]+𝛽2𝑑(𝑆𝑥, 𝑆𝑦) 

 +𝛽3[𝑑(𝐴𝑥, 𝑆𝑦) + 𝑑(𝐵𝑦, 𝑆𝑥)] 
where 𝛽𝑖 ≥ 0, (𝑖 = 1,2,3) (with at least one 𝛽𝑖 non zero) and 2𝛽1+𝛽2+2𝛽3 < 1 

If one of the 𝐴(𝑋), 𝐵(𝑋) and 𝑆(𝑋) is a complete subspace of 𝑋, then the pair (AB,S) have unique coincidence point. 

Further, if the pairs (A, S) and (B, S) are coincidentally commuting (weakly compatible), then A, B and S have a unique 

common fixed point.  

Now, we furnish an example to demonstrate the validity of the hypothesis of our Corollary(2.2). 

 

Example 2.6: Consider 𝑋 = [0,1] with the usual metric defined by  

 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = |𝑥 − 𝑦| and 𝐹 = 𝑅 = Real Banach space. 

Define self mappings A, B, S, T, I and J on 𝑋 by  

 𝐴𝑥 =
3𝑥

8
, 𝐵𝑥 =

4𝑥

10
, 𝑆𝑥 =

𝑥

5
, 𝑇𝑥 =

5𝑥

12
, 𝐼𝑥 =

3𝑥

20
, 𝐽𝑥 =

𝑥

3
 

Here,  𝐴𝐵𝑥 = 𝐴 (
4𝑥

10
) =

3

8
(

4𝑥

10
) =

3

20
𝑥 

 𝑆𝑇𝑥 = 𝑆 (
5𝑥

12
) =

1

5
(

5𝑥

12
) =

𝑥

12
 

∴ 𝐴𝐵(𝑋) = [0,
3

20
] ⊂ [0,

1

3
] = 𝐽(𝑋) 

 𝑆𝑇(𝑋) = [0,
1

12
] ⊂ [0,

3

20
] = 𝐼(𝑋) 

or, 𝐴𝐵(𝑋) ⊂ 𝐽(𝑋) and 𝑆𝑇(𝑋) ⊂ 𝐼(𝑋) 

Here all the contractive condition of the Corollary (2.2) are satisfied. Hence, mappings A, B, S, T, I and J have a unique 

common fixed point at 𝑥 = 0. 

Now, we furnish an example to demonstrate the validity of the hypothesis of our corollary (2.3). 

 

Example 2.7: Consider 𝑋 = [0,8] with the usual metric defined by  

 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ = |𝑥 − 𝑦| and 𝐹 = 𝑅 = Real Banach space. 

Define self mappings A, B, S and T on 𝑋 as 

 𝐴0 = 0, 𝐴𝑥 = 1, 0 < 𝑥 ≤ 8 

 𝐵0 = 0, 𝐵𝑥 = 1, 0 < 𝑥 < 8, 𝐵8 = 0 

 𝑆0 = 0, 𝑆𝑥 = 7, 0 < 𝑥 < 8, 𝑆8 = 4 

 𝑇0 = 0, 𝑇𝑥 = 8, 0 < 𝑥 < 8, 𝑇8 = 1 

 

Here all the four maps in this example are discontinuous even at their unique common fixed point 0. 

Here, 𝐴(𝑋) = {0,1} ⊂ 𝑇(𝑋) = {0,1,8} 

And 𝐵(𝑋) = {0,4} ⊂ 𝑆(𝑋) = {0,4,7} 
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Also, the pair (𝐴, 𝑆) and (𝐵, 𝑇) are coincidentally commuting at 𝑥 = 0 which is their common coincidence point. 

i.e.  𝐴0 = 𝑆0 ⇒ 𝐴𝑆0 = 𝑆𝐴0 

 𝐵0 = 𝑇0 ⇒ 𝐵𝑇0 = 𝑇𝐵0 

By a routine calculation, we can verify that all the contractive conditions of corollary (2.3) are satisfied for 𝛽1 =
1

20
, 𝛽2 =

1

10
 and 𝛽3 =

3

8
. (2𝛽1 + 𝛽2 + 2𝛽3 = 0.95 < 1). 
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