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Abstract--- The aim of this study is to apply machine learning algorithms to identify autism spectrum disorder 

(ASD) patients from brain imaging dataset, based only on brain activation patterns. ASD is a brain-based disorder 

normally characterized by repetitive and social behaviors but in the present study imaging data from a world- wide 

multisite database known as ABIDE (Autism Brain Imaging Data Exchange) is used for classification. A deep 

learning method that combines supervised and unsupervised machine learning method has been employed to do the 

process. Input is based on the respective neural patterns of functional connectivity using resting state functional 

magnetic resonance imaging (rs- FMRI) present in pre- processed ABIDE dataset from which associativity matrix is 

calculated between different regions of the brain which show an anti-correlation of brain function between anterior 

and posterior areas of the brain. Extracted features are then subjected to the pr e-training stage along with 

phenotypic information. Finally, the pre-trained weights are given as input to a Convolutional neural network and 

classifies as ASD or control type. 
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I. INTRODUCTION 
Autism Spectrum Disorder is a brain-based disorder characterized by social deficits and repetitive behaviour. 

According to a recent Centre for Disease Control study, ASD affects one in 68 children in the United States. The 

main aim of psychiatric Neuroimaging research is to identify objective biomarkers that may inform the diagnosis 

and treatment of brain- based disorders. Data rich deep learning methods are a promising tool for studying the 

replicability of patterns of brain function across larger, more heterogeneous datasets. The primary goal of the current 

study is to classify autism spectrum disorder (ASD) patients and control participants based on their neural patterns of 

functional connectivity using resting state functional magnetic resonance imaging (rs-fMRI) data. Both supervised 

and unsupervised machine learning (ML) methods was used together to create a novel deep learning method. This 

method was applied to a large population sample of brain imaging data, the Autism Imaging Data Exchange I 

(ABIDE I). The secondary goal of this study is to study the neural patterns associated with ASD that contributed 

most to the classification. The results are then evaluated in the light of networks of brain regions that differentiate 

ASD from controls and of previous studies of ASD brain function. 

ASD is associated with a range of phenotypes that vary in severity of social, communicative and sensory motor 

deficits. Currently, diagnostic instruments only assess the characteristic social behaviors and language skills of 
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autism patients. Yet studies have proved that neuro- scientific research can help bridge the gap between a clear 

mapping of the complexity of a spectrum of alterations in autism behaviour and their neural patterns [11]. Brain 

imaging studies have significantly advanced the understanding of the neural underpinnings in brain-based disorders 

and their associated behavior. Such an example would be studies on ASD and its social and communicative deficits 

[3][13][12][5].The pattern identification for activation of neural connectivity in ASD and the association of these 

patterns with neural and psychological components contributes to the understanding in etiology of mental disorders 

[13][11] of not only ASD but also Schizophrenia etc. 

One of the challenges in brain imaging studies of neural disorders is to replicate these studies across larger, more 

demographically heterogeneous datasets that reflect the heterogeneity of clinical populations. Recently, ML 

algorithms have been applied to brain imaging data to extract replicable brain function patterns. These algorithms 

can extract replicable, robust neural patterns from brain imaging data of psychiatric disorder patients [9]. 

II. PREVIOUS WORKS 
Several research works related to autism spectrum disorder are described in this section. The segment briefly 

explains pertinent research on diagnosis based on fMRI data using machine learning and deep learning methods. 

Plis et al. [9] used structural T1-weighted images and deep learning in order to classify patients with 

schizophrenia against healthy controls, using data from four different neural sites; the authors also classified patients 

with Huntington disease from healthy controls. [7] Trained a Deep Belief Network with 3 depths (50 hidden units in 

the first layer, 50 in the second layer, and 100 in the final layer). They achieved 90% classification accuracy using 

features extracted from three DBMs in comparison to 68% classification accuracy using raw data classified with a 

Support Vector Machine. 

The t-Distributed Stochastic Neighbor embedding (t-SNE) [16] method was used to reduce the resultant data to a 

2-dimensional version; on which results showed a linearly separable projection into patients and control. 

In another approach, cross-validation was utilized to further train the machine learning model. For the left-out 

subjects in the cross-validation fold, the actual value of each connection was subtracted from the estimated values 

obtained from the autism model and from the control model. The average of subtraction across all 7266 ROIs was 

computed, and average values of ROIs were summed. Positive values were classified as ASD and negative values, 

as controls [9] obtained as high as 60. 

III. PROPOSED ARCHITECTURE 
Proposed architecture consists of steps ranging from the data transformation process to the final classification of 

ASD and control type patients. The initial step is data transformation process and using it, a correlation analysis for 

different regions of brain is done followed by pre-training and classification stage. The features are passed as input to 

stacked de-noising auto encoder for pre-training stage. The stacked model consist of two auto-encoder structure, the 

first one has an input and output layer of 19900 fully connected to a bottle neck of 1000 neurons from hidden layer. 

The second auto encoder maps 1000 inputs from the output of the previous auto encoder to outputs through a hidden 

layer of 600 units.  
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The revised encoder weights from the output of auto encoder are given as input to a CNN having the 

configuration: 19900-1000- 600-2. In other words, it has two hidden layers of 1000 and 600 each and an output layer 

of 2 units which classifies the ASD and control patients. 

IV. METHODOLOGY AND APPROACH 
Dataset 

The ABIDE data was previously used by [6] to classify autism patients from control subjects based on neural 

connectivity measurements. This study reproduced an approach reported in [6] with modifications that included data 

sets multiple sites. Blood Oxygen level imaging signal from non-overlapping, grey matter ROIs (SPM8 mask 

grey.nii) formed by Voxels separated by 5 mm were computed for the 964 subjects used in the dataset. Voxels that 

were Euclidean close to a specific ROI's seed voxel were included in this ROI [9]and was used to compute a 

connectivity matrix of size 7266 × 7266, by calculating the pair wise correlation between each ROI. The ABIDE 

dataset consists of data collected from 505 ASD individuals and 530 matched control patients (typical controls, TC). 

This data was collected at 17 different imaging sites which includes rs-fMRI images, T1 structural brain images and 

phenotypic information for each patient. 

 

Fig. 1.4.1: Proposed architecture to classify Autism spectrum disorder 

V. FEATURE EXTRACTION 
To identify essential features from the dataset, functional connectivity was used to classify subjects as ASD and 

TC. Functional connectivity measures to an extent, an index of the strength of co-activation of brain regions based on 

the rs-fMRI brain imaging data. Each cell in the connectivity matrix contains a Pearson correlation coefficient. The 

coefficient is an index of the correlation between two areas of the brain, and it ranges from 1 to −1: values close to 1 

indicate that the time series are highly correlated; values close to −1 indicate that time series are anti-correlated. 

The upper triangle values were removed for use of the values in the correlation matrix as features. These values 

are redundant since they repeat the values in the lower triangle. Main diagonal of the matrix also was not considered, 

since it represents a feature correlating to itself. 

Next, flattening the remaining values to retrieve a one- dimensional vector of features, with the purpose of using 

it for classification of subjects. The resultant number of features is 19900. 
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Fig.1.4.2: Features extracted from pre-processed dataset 

Pre-Training Stage 

The De-noising auto encoders are employed to train the neural network model for superior generalization. De-

noising auto- encoders reconstruct the input based on a corrupted version of the input [14]. Some positions of the 

vector derived from a functional connectivity matrix are set to zero before training the model. 

As a first measure, two stacked de-noising auto-encoders were used for the unsupervised pre-training stage. The 

best optimization for validation set using mean squared error was achieved. The input and output layers have 19,900 

features fully connected to a narrowed hidden layer of 1000 neurons. The probability of data corruption for the first 

auto encoder is set from the binomial distribution: n =1, p = 0.8 i.e 20%. The second auto encoder maps 1000 inputs 

from the output of the previous auto encoder to outputs through a hidden layer of 600 units. The second auto 

encoder corruption module is parameterized to corrupt a feature with a probability of 30% (for the binomial 

distribution: n= 1, p = 0.7). 

Classification Stage 

The encoders’ weights and biases from auto-encoders are sent to a Convolutional Neural Network with the 

configuration: 19,900-1,000-600-2. That is, the CNN assumes an input space of 19,900 features and an output space 

of 2 numbers. Between the input and output layers, the network has two hidden layers with 1000 and 600 units. 

The CNN maps adjusted weights based on the auto encoder weights; so, its supervised training stage is called 

fine- tuning. The aim of this step is to adjust the weights of the layers to output the expected classes as per our 

classification and minimize prediction error on the supervised task by the CNN model. The output layer contains two 

output units: each unit represents the probability of an input to be from an ASD or a TC subject. 
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Fig. 1.4.3: Two auto encoder structure 

 

Fig. 1.4.4.: CNN structure 

VI. RESULTS AND DISCUSSION 
The deep neural network achieved an average classification accuracy of70% (sensitivity 74%, specificity 63%) 

from the cross-validation folds, and accuracy between 66% to 71% in individual folds. Based on the literature 

studied, this is the highest classification accuracy achieved so far. The Support Vector Machine method achieved 

mean accuracy of 65% (from 62% to 72%, sensitivity68%, specificity 62%); while the Random Forest classifier 

achieved mean accuracy of 63% (sensitivity 69%, specificity 58%). These results show that the deep learning 

algorithm classified ASD and typical participants above chance in the multi-site ABIDE data. Also, the algorithm 

outperformed other supervised methods used for comparison. Table 7.1 shows the comparison of three different 

methods. Figures 7.1 and 7.2 shows the pre-processed data and the features of the model respectively. Figure 7.3 and 

7.4 shows the training stage in the model of auto encoder and CNN respectively. Figure 7.5 signifies the performance 

metrics of the model classification. 

Table 1.4.5 Comparison of DNN, RF and SVM on ABIDE 

Method Accuracy Sensitivity Specifi city 
SVM 0.65 0.68 0.62 
RF 0.63 0.69 0.58 
DNN 0.70 0.74 0.63 
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Fig. 1.4.4: Pre-processed fMRI dataset 

 

Fig 1.4.5: Features after Pearson Coefficient Correlation 

The features as shown in figure 5.2 are given as input to the deep neural network. The corresponding training of 

the DNN model is shown in figures 5.3 and 5.4. 

Received: 16 Nov 2018 | Revised: 25 Dec 2018 | Accepted: 10 Jan 2019                  423 



International Journal of Psychosocial Rehabilitation, Vol. 23, Issue 01, 2019 
ISSN: 1475-7192 

 

Fig 1.4.6: Training Model of Auto Encoder for pre-training 

 

Fig 1.4.7: Training Model of CNN for Classification 

After training the model, testing against the test set and the performance metrics are shown in figure 7.5. 

 

Fig.1.4.8: Performance metrics of the model classification 

The 65% mean accuracy on the trained model in the present study improves the current state of the art technique. 

Previous studies so far suggests that supervised methods are far effective at classifying high-dimensional spaces in 

smaller population samples; deep neural networks allows to represent more complex functions, especially when used 

with auto encoders. The networks thus effectively reduce the dimensionality of problems having a very large feature 

space. 
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VII. CONCLUSION AND FUTURE WORK 
In this work, a model is proposed for classification of ASD and control type patients. Through conclusive 

analysis, deep learning methods that reliably classify big multi-site datasets were found. To account for multiple 

sites the model should be trained upon multiple additional sources of variance in subjects, scanning procedures and 

equipment in comparison to single site datasets [15]. Such variation adds noise to the brain imaging data that 

challenges the ability to draw signatures from the brain. Activation that can classify disease states; yet the 

achievement of reliable classification accuracy despite such noise generated from different equipment and 

demographics shows promise for machine learning applications to clinical datasets and for future application of 

machine learning in the assistance of identification of mental disorders. [9] stated that the overall assessment of 

classification of ASD using resting-state fMRI data thus far falls short of biomarker standards; such obstacle is not 

overcome in the present study. Yet, a step in the direction of more reliable results has been taken. 
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