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Computer Aided System for Autism Spectrum
Disorder Using Deep Learning Methods

K. Sairam, J. Naren, Dr.G. Vithya and S. Srivathsan

Abstract--- The aim of this study is to apply machine learning algorithms to identify autism spectrum disorder
(ASD) patients from brain imaging dataset, based only on brain activation patterns. ASD is a brain-based disorder
normally characterized by repetitive and social behaviors but in the present study imaging data from a world- wide
multisite database known as ABIDE (Autism Brain Imaging Data Exchange) is used for classification. A deep
learning method that combines supervised and unsupervised machine learning method has been employed to do the
process. Input is based on the respective neural patterns of functional connectivity using resting state functional
magnetic resonance imaging (rs- FMRI) present in pre- processed ABIDE dataset from which associativity matrix is
calculated between different regions of the brain which show an anti-correlation of brain function between anterior
and posterior areas of the brain. Extracted features are then subjected to the pr e-training stage along with
phenotypic information. Finally, the pre-trained weights are given as input to a Convolutional neural network and

classifies as ASD or control type.

Keywords--- fMRI, Deep Learning, Resting State, Autism.

I. INTRODUCTION
Autism Spectrum Disorder is a brain-based disorder characterized by social deficits and repetitive behaviour.

According to a recent Centre for Disease Control study, ASD affects one in 68 children in the United States. The
main aim of psychiatric Neuroimaging research is to identify objective biomarkers that may inform the diagnosis
and treatment of brain- based disorders. Data rich deep learning methods are a promising tool for studying the
replicability of patterns of brain function across larger, more heterogeneous datasets. The primary goal of the current
study is to classify autism spectrum disorder (ASD) patients and control participants based on their neural patterns of
functional connectivity using resting state functional magnetic resonance imaging (rs-fMRI) data. Both supervised
and unsupervised machine learning (ML) methods was used together to create a novel deep learning method. This
method was applied to a large population sample of brain imaging data, the Autism Imaging Data Exchange |
(ABIDE 1). The secondary goal of this study is to study the neural patterns associated with ASD that contributed
most to the classification. The results are then evaluated in the light of networks of brain regions that differentiate

ASD from controls and of previous studies of ASD brain function.

ASD is associated with a range of phenotypes that vary in severity of social, communicative and sensory motor

deficits. Currently, diagnostic instruments only assess the characteristic social behaviors and language skills of
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autism patients. Yet studies have proved that neuro- scientific research can help bridge the gap between a clear
mapping of the complexity of a spectrum of alterations in autism behaviour and their neural patterns [11]. Brain
imaging studies have significantly advanced the understanding of the neural underpinnings in brain-based disorders
and their associated behavior. Such an example would be studies on ASD and its social and communicative deficits
[31[13][12][5]. The pattern identification for activation of neural connectivity in ASD and the association of these
patterns with neural and psychological components contributes to the understanding in etiology of mental disorders
[13][11] of not only ASD but also Schizophrenia etc.

One of the challenges in brain imaging studies of neural disorders is to replicate these studies across larger, more
demographically heterogeneous datasets that reflect the heterogeneity of clinical populations. Recently, ML
algorithms have been applied to brain imaging data to extract replicable brain function patterns. These algorithms

can extract replicable, robust neural patterns from brain imaging data of psychiatric disorder patients [9].

Il. PREVIOUS WORKS
Several research works related to autism spectrum disorder are described in this section. The segment briefly

explains pertinent research on diagnosis based on fMRI data using machine learning and deep learning methods.

Plis et al. [9] used structural T1-weighted images and deep learning in order to classify patients with
schizophrenia against healthy controls, using data from four different neural sites; the authors also classified patients
with Huntington disease from healthy controls. [7] Trained a Deep Belief Network with 3 depths (50 hidden units in
the first layer, 50 in the second layer, and 100 in the final layer). They achieved 90% classification accuracy using
features extracted from three DBMs in comparison to 68% classification accuracy using raw data classified with a

Support Vector Machine.

The t-Distributed Stochastic Neighbor embedding (t-SNE) [16] method was used to reduce the resultant data to a

2-dimensional version; on which results showed a linearly separable projection into patients and control.

In another approach, cross-validation was utilized to further train the machine learning model. For the left-out
subjects in the cross-validation fold, the actual value of each connection was subtracted from the estimated values
obtained from the autism model and from the control model. The average of subtraction across all 7266 ROIs was
computed, and average values of ROIs were summed. Positive values were classified as ASD and negative values,

as controls [9] obtained as high as 60.

I1l. PROPOSED ARCHITECTURE
Proposed architecture consists of steps ranging from the data transformation process to the final classification of

ASD and control type patients. The initial step is data transformation process and using it, a correlation analysis for
different regions of brain is done followed by pre-training and classification stage. The features are passed as input to
stacked de-noising auto encoder for pre-training stage. The stacked model consist of two auto-encoder structure, the
first one has an input and output layer of 19900 fully connected to a bottle neck of 1000 neurons from hidden layer.
The second auto encoder maps 1000 inputs from the output of the previous auto encoder to outputs through a hidden

layer of 600 units.
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The revised encoder weights from the output of auto encoder are given as input to a CNN having the
configuration: 19900-1000- 600-2. In other words, it has two hidden layers of 1000 and 600 each and an output layer

of 2 units which classifies the ASD and control patients.

1V. METHODOLOGY AND APPROACH
Dataset

The ABIDE data was previously used by [6] to classify autism patients from control subjects based on neural
connectivity measurements. This study reproduced an approach reported in [6] with modifications that included data
sets multiple sites. Blood Oxygen level imaging signal from non-overlapping, grey matter ROls (SPM8 mask
grey.nii) formed by Voxels separated by 5 mm were computed for the 964 subjects used in the dataset. Voxels that
were Euclidean close to a specific ROI's seed voxel were included in this ROI [9]and was used to compute a
connectivity matrix of size 7266 x 7266, by calculating the pair wise correlation between each ROI. The ABIDE
dataset consists of data collected from 505 ASD individuals and 530 matched control patients (typical controls, TC).
This data was collected at 17 different imaging sites which includes rs-fMRI images, T1 structural brain images and

phenotypic information for each patient.

Fig. 1.4.1: Proposed architecture to classify Autism spectrum disorder

V. FEATURE EXTRACTION

To identify essential features from the dataset, functional connectivity was used to classify subjects as ASD and
TC. Functional connectivity measures to an extent, an index of the strength of co-activation of brain regions based on
the rs-fMRI brain imaging data. Each cell in the connectivity matrix contains a Pearson correlation coefficient. The
coefficient is an index of the correlation between two areas of the brain, and it ranges from 1 to —1: values close to 1

indicate that the time series are highly correlated; values close to —1 indicate that time series are anti-correlated.

The upper triangle values were removed for use of the values in the correlation matrix as features. These values
are redundant since they repeat the values in the lower triangle. Main diagonal of the matrix also was not considered,

since it represents a feature correlating to itself.

Next, flattening the remaining values to retrieve a one- dimensional vector of features, with the purpose of using

it for classification of subjects. The resultant number of features is 19900.
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Fig.1.4.2: Features extracted from pre-processed dataset
Pre-Training Stage

The De-noising auto encoders are employed to train the neural network model for superior generalization. De-
noising auto- encoders reconstruct the input based on a corrupted version of the input [14]. Some positions of the

vector derived from a functional connectivity matrix are set to zero before training the model.

As a first measure, two stacked de-noising auto-encoders were used for the unsupervised pre-training stage. The
best optimization for validation set using mean squared error was achieved. The input and output layers have 19,900
features fully connected to a narrowed hidden layer of 1000 neurons. The probability of data corruption for the first
auto encoder is set from the binomial distribution: n =1, p = 0.8 i.e 20%. The second auto encoder maps 1000 inputs
from the output of the previous auto encoder to outputs through a hidden layer of 600 units. The second auto
encoder corruption module is parameterized to corrupt a feature with a probability of 30% (for the binomial
distribution: n=1, p = 0.7).

Classification Stage

The encoders’ weights and biases from auto-encoders are sent to a Convolutional Neural Network with the
configuration: 19,900-1,000-600-2. That is, the CNN assumes an input space of 19,900 features and an output space
of 2 numbers. Between the input and output layers, the network has two hidden layers with 1000 and 600 units.

The CNN maps adjusted weights based on the auto encoder weights; so, its supervised training stage is called
fine- tuning. The aim of this step is to adjust the weights of the layers to output the expected classes as per our
classification and minimize prediction error on the supervised task by the CNN model. The output layer contains two

output units: each unit represents the probability of an input to be from an ASD or a TC subject.
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Fig. 1.4.4.: CNN structure

VI. RESULTS AND DISCUSSION

The deep neural network achieved an average classification accuracy of70% (sensitivity 74%, specificity 63%)
from the cross-validation folds, and accuracy between 66% to 71% in individual folds. Based on the literature
studied, this is the highest classification accuracy achieved so far. The Support Vector Machine method achieved
mean accuracy of 65% (from 62% to 72%, sensitivity68%, specificity 62%); while the Random Forest classifier
achieved mean accuracy of 63% (sensitivity 69%, specificity 58%). These results show that the deep learning
algorithm classified ASD and typical participants above chance in the multi-site ABIDE data. Also, the algorithm
outperformed other supervised methods used for comparison. Table 7.1 shows the comparison of three different
methods. Figures 7.1 and 7.2 shows the pre-processed data and the features of the model respectively. Figure 7.3 and
7.4 shows the training stage in the model of auto encoder and CNN respectively. Figure 7.5 signifies the performance
metrics of the model classification.

Table 1.4.5 Comparison of DNN, RF and SVM on ABIDE

Method Accuracy Sensitivity Specifi city
SVM 0.65 0.68 0.62
RF 0.63 0.69 0.58
DNN 0.70 0.74 0.63
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Fig. 1.4.4; Pre-processed fMRI dataset
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Fig 1.4.5: Features after Pearson Coefficient Correlation

The features as shown in figure 5.2 are given as input to the deep neural network. The corresponding training of
the DNN model is shown in figures 5.3 and 5.4.
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Exp=aal_whole @, Model=ael, Iter= 688, Cost=0.489436 8.437892 8.444635
Exp=aal_whole_&, Model=ael, Iter= 689, Cost=0.491161 #.436181 @.444932
Exp=aal whole @, Model=ael, Iter= 698, Cost=0.4008354 0.434224 8.447572
Exp=aal_whole_@, Model=ael, Iter= 691, Cost=0.492472 8.435842 @.446264
Exp=aal_whole_@, Model=ael, Iter= 692, Cost=0.489645 8.436208 8.447637
Exp=aal_whole @, Model=ael, Iter= 693, Cost=0.498782 B.435754 8.4456149
Exp=aal whole @, Model=ael, Iter= 694, Cost=0.492936 8.434685 #.444925
Fig 1.4.6: Training Model of Auto Encoder for pre-training

Exp=aal_whole_3, Model=ae2, Iter= 975, Cost=8.377758 ©.376768 @.576473

Exp=aal_whole_3, Model=ae2, Iter= 976, Cost=@.577748 ©.576729 @.576389

Exp=aal_whole_3, Model=ae2, Iter= 977, Cost=8.577593 @.576687 @.576348 Saving better model

Exp=aal_whole_3, Model=ae2, Iter= 978, Cost=8.577573
Exp=aal_whole_3, Model=ae2, Iter= 979, Cost=@.577637
Exp=aal_whole_3, Model=ae2, Iter= 938, Cost=8.577657
Exp=aal_whole_3, Model=ae2, Iter= 981, Cost=8.577594
Exp=aal_whole_3, Model=ae2, Iter= 982, Cost=8.577637
Exp=aal_whole_3, Model=ae2, Iter= 983, Cost=8.577903
Exp=aal_whole_3, Model=ae2, Iter= 984, Cost=8.5776@3
Exp=aal_whole_3, Model=ae2, Iter= 985, Cost=8.577492 8.576522 @.576264 Saving better model
Exp=aal_whole_3, Model=ae2, Iter= 0986, Cost=8.577588 8.576545 @8.576387

8 8
8 8
8 8
8.576711 @
8 8
8 8
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8 8
8 8
8 8
Exp=aal_whole_3, Model=ae2, Iter= 987, Cost=@.577557 @.576543 B.576235
8 8
@ @
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8 8
8 8
8 8
8 8
8 8
8 8
@ @
@ @
8 8

576667
576654
576593
.576562
376634
576578

. 576485
.576381 Saving better model
.576374 Saving better model
.576392 Saving better model
.576352 Saving better model
376358
576318

Exp=aal_whole_3, Model=ae2, Iter= 988, Cost=8.577199 #.576522 @.576212 Saving better model
Exp=aal_whole_3, Model=ae2, Iter= 989, Cost=0.577711 @.576471 0.576223 Saving better model
Exp=aal_whole_3, Model=ae2, Iter= 998, Cost=0.577306 ©.576498 0.576142
Exp=aal_whole_3, Model=ae2, Iter= 991, Cost=8.577296 @.576513 ©.576220
Exp=aal_whole_3, Model=ae2, Iter= 992, Cost=8.577759 @.576477 8.576150
Exp=aal_whole_3, Model=ae2, Iter= 993, Cost=8.577481 8.576410 @.576208 Saving better model
Exp=aal_whole_3, Model=ae2, Iter= 0994, Cost=8.577553 8.576427 B.576145
Exp=aal_whole_3, Model=ae2, Iter= 995, Cost=@.57726@ 8.576424 B.576892
Exp=aal_whole_3, Model=ae2, Iter= 996, Cost=0.577284 #.576381 @.576891 Saving better model
Exp=aal_whole_3, Model=ae2, Iter= 997, Cost=0.577306 ©.576482 @.576139
Exp=aal_whole_3, Model=ae2, Iter= 993, Cost=0.57746@ 8.576367 0.576854 Saving better model
Exp=aal_whole_3, Model=ae2, Iter= 999, Cost=@.577168 @.576344 0.576@65 Saving better model

Fig 1.4.7: Training Model of CNN for Classification

After training the model, testing against the test set and the performance metrics are shown in figure 7.5.

[ d4a

index Exp Accuracy Precision  Recall F-score Sensivity Specificity
@ @ aal whole @.647036 @.649956 @.688138 ©.663894 @.630138 8.612316

Fig.1.4.8: Performance metrics of the model classification

The 65% mean accuracy on the trained model in the present study improves the current state of the art technique.
Previous studies so far suggests that supervised methods are far effective at classifying high-dimensional spaces in
smaller population samples; deep neural networks allows to represent more complex functions, especially when used
with auto encoders. The networks thus effectively reduce the dimensionality of problems having a very large feature

space.

Received: 16 Nov 2018 | Revised: 25 Dec 2018 | Accepted: 10 Jan 2019 424



International Journal of Psychosocial Rehabilitation, Vol. 23, Issue 01, 2019
ISSN: 1475-7192

VIl. CoNcLUSION AND FUTURE WORK

In this work, a model is proposed for classification of ASD and control type patients. Through conclusive
analysis, deep learning methods that reliably classify big multi-site datasets were found. To account for multiple
sites the model should be trained upon multiple additional sources of variance in subjects, scanning procedures and
equipment in comparison to single site datasets [15]. Such variation adds noise to the brain imaging data that
challenges the ability to draw signatures from the brain. Activation that can classify disease states; yet the
achievement of reliable classification accuracy despite such noise generated from different equipment and
demographics shows promise for machine learning applications to clinical datasets and for future application of
machine learning in the assistance of identification of mental disorders. [9] stated that the overall assessment of
classification of ASD using resting-state fMRI data thus far falls short of biomarker standards; such obstacle is not

overcome in the present study. Yet, a step in the direction of more reliable results has been taken.
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