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Abstract 

Graph query processing is a very important application for the graph data. The graph data set size 

increases day by day due to digitization of all types of data, in order to process the large amount of 

graph data using number of machines not by single machine. Graph query processing using 

distributed frameworks like Hadoop is a challenging task. Many users are giving graph queries to 

process in distributed environment, in an interactive way it has to process all the queries. It becomes 

hard to process graph queries from a big graph dataset. This paper mainly emphasis on processing of 

multiple graph queries over a large set of graphs, using MapReduce framework. We introduced edge 

occurrence index to process multiple queries using filter and verify technique in MapReduce. We are 

using structure based graph partitioning to distribute all the graphs to the machines in the cluster 

based on structure of the graphs. The proposed algorithm is called as MapReduce based Distributed 

Graph Grep using Edge Occurrence Index MRDGG. Extensive experimental result analysis on 

various real-world graph datasets proved that the proposed work improves the performance and 

reduces the time for multiple graph query processing for massive collections of graphs. 

Keywords: graph query; graph dataset; bigdata; parallel processing; MapReduce; Distributed graph 

query processing; Join technique. 

 

1. INTRODUCTION 

Graph is complex data structure to represent relations among the entities such as chemical 

compounds, interactions of protein and web data can be modeled by graphs in many applications [1]. 

Mining tools and graph data management are useful for an user to store, manage and analyze huge 

graph dataset efficiently. Graph data mining can be broadly categorized into the following: 
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Structural Pattern Mining: When a graph dataset is given, extracting the interesting structural patterns 

is referred to as the structural pattern mining. 

Graph Indexing and Search: It focus mainly on the creation of graph index and then perform search 

operation. This searching can be done exactly in small graph databases. Approximately searching 

strategy can be applied on large graph data bases. Graph datasets are available in the following two 

categories: Graph transaction setting[2] dataset consists of a large number of small graphs. Single 

graph setting[3] the data is a single big graph. This paper mainly emphasis on the graph transaction 

setting which consists of millions of graphs. Scientific domains such as chemistry and bio-informatics 

are the major dependents of Transaction graph datasets. 

Graph queries are used to retrieve the information from graph databases. These graph queries are 

categorized into 2 types. They are Subgraph query: Retrieving all the graphs in the huge graph dataset 

for which the given query graphs are the subgraphs. Supergraph query:  Retrieving all the graphs in 

the dataset for which the given query graphs are the super graphs. 

Many researchers proposed various methods to process graph queries using graph indexing such as 

GraphGrep[4], GraphIndex[5], FGIndex[6], Closure-Tree[7] etc. These algorithms assume is small 

and fit in main memory, but the size of the data is increasing day by day, for example, SCIFinder 

reports that about 4000 new compound structures are added each day. In such scenarios these kind of 

indexing algorithms are unfit. For these kind of applications, it is not appropriate to employ these kind 

of in-memory approaches, as it is somewhat difficult to prepare and update the index and perform 

query processing on a centralized machine efficiently. Big Data Frameworks are used by the 

researchers in all the domains where the data is huge. 

This work processes multiple graph queries using Hadoop MapReduce. At first we have to begin with 

a naive approach and its drawbacks. To overcome the time consumption drawback of naive approach 

and number of subgraph isomorphism tests we used filter and verify scheme. MR Distributed Graph-

Grep partitions the graphs into set of machines.  Collectively all machines generate the Inverted Edge 

Occurrence Index. This Index is stored in the HDFS. Filter and verify steps are used when a set of 

graph queries are being processed. This is the first work to generate inverted edge occurrence index 

for graph database and processing multiple graph queries over a large graph dataset using Join 

technique in MapReduce. The following are the contributions of this paper: 

• We introduce inverted edge occurrence index and its maintenance. 

• The graphs are filtered using Replicated Join using Distributed Cache in hadoop. 

• Multiple graph queries can be processed as batch processing. 
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• MRDGG performance was demonstrated on synthetic as well as real world large datasets. 

The rest of the paper is as follows: the related work was presented in Section 2 and preliminaries were 

presented in section 3. Proposed method was explained in Section 4. In Section 5 experimental results 

were presented. Finally, Section 6 concludes the work. 

2.   RELATED WORK 

Graph indexing techniques are classified into two types: path-based Index, sub-graph based Index. In 

Path-based Index, generate all the paths upto some maximum length and then build index for all the 

paths. For example graphgrep[4]. SubGraph based index generates all subgraphs and then index the 

subgraphs. For example gIndex[5], FGIndex[6], Closure-Tree[7], GString[8]. Graph indexing 

algorithms assume that the data set is small and the mining task will be finished in a small amount of 

time by using an in-memory based methodology. Most of the graph data sets are difficult to handle 

within a single machine due to their size and complexity for example the PubChem project now a 

days serves more than 30 million chemical compounds, whose storage capacity hits terabytes[12] of 

memory. MSP[10] proposes  structure  based graph partitioning to process multiple subgraph query 

processing using MapReduce. In[11] Extended graph  partition  and enumeration of multiple 

subgraphs are presented. 

In distributed environment heterogeneous types of graphs are collected and stored to process. When 

the dataset is large, mining the large graph dataset and then indexing is a complex work. To overcome 

this drawback, in this paper we used edge based index because edge is the basic unit for any graph. 

MapReduce Technique has grabbed the attention of people from both of industry and academia[5]. 

MapReduce technique presents a distributed way to process data intensive jobs without having the 

difficulty in handling jobs across nodes. It opts for a data intensive approach of distributed computing 

with the ease of “moving computation to data”. Apart from this, to improve the IO performance and to 

handle massive data distributed file system was utilized. Another interesting fact is that high level 

details are hidden from programmers which make them to develop distributed solutions is an easy 

way. Most of the people admired because of this reason. 

2.1 Join data from different sources using MapReduce 

There are several possible approaches with different tradeoffs. The comparison of different join 

algorithms in MapReduce is presented in [19]. 

• Reduce-side join:  

It is also termed as re-partitioned sort-merge join. Each record is associated with tag that is data 

source name. Most of the processing is done at the reducer. Joining operation is carried out at the end 
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of reduce phase. At first all the data was shuffled across the network and then majority of the data was 

dropped during the joining process. The more efficient mechanism would be elimination of more data 

in the map phase. 

• Replicated join using Distributed Cache 

By using join operation we can join data from two sources, one source is big and the second source is 

small. A tremendous gain in efficiency is achieved if the source which is small fits in the memory of 

mapper and all mappers perform joining in the map phase. In database terminology it is called 

replicated join as one of the data table is replicated across all nodes in the cluster. 

Distributed Cache: To distribute files to all nodes in a cluster, Hadoop has a new mechanism termed 

as distributed cache. 

Using distributed cache small data is available to all mappers. So join takes place in the mapper. So it 

reduces the communication cost. Song-Hyon Kim et al.[9] proposed a parallel approach to process 

multiple graph queries using MapReduce and Bloom filter. Here BloomFilter is filtering the data 

graphs based on edge label.  To filter the graphs using Bloom filter is a time consuming process and 

producing false positive values is another drawback of Bloom filter.  It is using naive approach. 

A solution to the subquery search in cloud was proposed by Y Luo et al.[15],  which  process  single 

query using two index files. This work filters the graphs only. Big graph processing frameworks are 

Pergel [16], Pegasus [17], processes a single big graph like social network or web data instead of set 

of small graphs. 

3    PRELIMINARIES 

3.1    Definitions 

Graph A graph is denoted by a tuple g = (V, E, L, l) where V is the set of vertices and E is the set of 

undirected edges such that E ⊆V x V. L is the set of labels of vertices or edges, and the labelling 

function defines the mapping: V ∪ E → L.  We also denote the vertex set and the edge set of graph g 

by V(g) and E(g) respectively. 

Subgraph Isomorphism Given two graphs s = (Vs, Es, Ls, ls) and g = (Vg, Eg, Lg, lg), s is said to be 

subgraph isomorphic to g (s ⊆ g) if and only if there exists an injective function f : Vs → Vg such that 

(1) ∀ v ∈ Vs, we can have f(v) ∈ Vg and ls(v) = lg(f(v)); (2) ∀(u, v) ∈Es, we can have(f(u), f(v)) ∈ 

Vg, and fs[u, v] = fg[f(u), f(v)]. Given two graphs g = (V, E, L, l) and g1 = (V 1, E1, L1, l1), g is sub- 

graph isomorphic to g1, denoted g ⊆ g1 if and only if there exists an injective function. The function 

is injective (one-to-one) if every element of the codomain is mapped to by at most one element of the 
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domain. An injective function is an injection. ∀x,y∈A f(x)=f(y)⇒x=y or equivalent ∀x,y∈A,x=y⇒ 

f(x) = f(y). 

3.2 Problem Statement 

 For the given graph dataset D = g1, g2, g3 gn contains set of small graphs and query set Q = q1, q2, 

q3..qm contains set of query graphs such that | Q | | D | for each graph query q ∈  Q, we have to find 

all the graphs to which q is subgraph isomorphic from D. 

Streams of queries are processed at a time in this approach. In a distributed environment, we have to 

process queries that emerge from different sources. Efficient query processing on high speed stream is 

useful for many applications that require accurate query response. Higher throughput is achieved by 

eliminating the recurring common parts among query in batch query processing Technique. 

3.3 Graph Representation 

Graph Representation as One Single Line: 

Number of Graph datasets are available  in multi-line format.  Frequent subgraph mining works[2] di- 

vides the given input graph dataset into a set of files and are given as input to  the Map Reduce 

program as part of the data representation step. A serialized format of g, exists in a single line format, 

which enumerates vertices and edges in g, i.e {|V(g)|, |E(g)|, l(V(g)), E(g)} where e ∈ E(g) is 

represented as from - gid, to - gid, l(e). <graphid>, <no of vertices> ,<no of edges><Labels of all 

vertices>,<edgelist> 

Graph id :  a unique identifier for a single graph g. No of vertces: total no of vertices in the graph. No 

of edges: total no of edges in the graph. Labels of all vertices: List of Labels of all the vertices of the 

graph. Edgelist:  List of edges of the graph. Each edge contains three elements. <sourceid, 

destinationid, edgelabel> For example: g2, 4, 4 , A, B, C, E, 0, 1, b, 0, 2, d, 1, 2, e, 2, 3,f. 

 

 

 

 

 

 

 

Figure 1:  A set of data graphs and a set of query graphs 
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4    PROPOSED APPROACHES 

In this section, we first discuss a naive approach for processing multiple graph queries using 

MRDGG. 

4.1    Naive Approach 

Naive approach performs parallel subgraph isomorphism test for each pair of query graph q and data 

graph g such that q ∈ Q and g ∈ D. Since | Q | | D |, using Distributed Cache these query graphs are 

available to all machine in the cluster. Each machine do the pair wise subgraph isomorphism test and 

if it is yes then it sends it to the reducer. At the reducer we get the query id and list of matched data 

graph ids. subgraph isomorphism test takes | Q | x | D | times in total, which is a time consuming 

process for query processing. To overcome this we proposed the MapReduce based Distributed Graph 

Grep (MRDGG). 

4.2 MRDGG: MapReduce based Distributed Graph Grep 

MRDGG is processing multiple graph queries using Replicated join using Distributed Cache and the 

number of subgraph isomorphism tests are reduced by filter and verify scheme. The basic steps of 

Distributed Graph Grep are as follows: 

• Build the Inverted Edge Occurrence based Index for large graph database. 

• Search  space  is  going  to  be  reduced  by  filtering  the  database  on  the basis of submitted 

queries. 

• Perform exact matching. 

• Index maintenance. 

Proposed work is divided into three phases:  

Index Building, Multiple Sub-graph query processing and Index maintenance phase. The Figure 2 

below describes in detail about each phase. According to the filter and verify approaches, during filter 

step we acquire candidate data graphs then in the second step instead of performing the subgraph 

isomorphism tests on all data  items apply only on the candidate graphs. Filter step filters all irrelevant 

graphs by comparing the features of query graphs with the features of data graph. It reduces the 

overall execution time significantly by reducing the number of graphs to be verified. 

It is using index files to filter and verify. We design three approaches to graph query processing using 

filter and verify scheme. 
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We design two Index files which are useful for Graph Query Processing. Inverted Edge Index file is 

used to filter the data graphs. Inverted Edge Occurrence Index is used to verify the subgraph 

isomorphism testing. Figure 2 shows that one map reduce round is used for index creation and one 

round is used for index maintenance. 

 

 

 

 

 

 

 

 

 

Figure 2: An overview of Index Building and Index Maintenance 

According to the Index files used in Graph Query processing we propose two approaches as follows: 

• Distributed Graph Query Processing using Inverted Edge Occurrence 

Index (One MapReduce round) 

• Distributed Graph Query Processing using both Inverted Edge Index and Inverted Edge Occurrence 

Index (two MapReduce rounds) 

 

 

 

 

 

 

Figure 3: Index building Phase 
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4.3 Distributed Graph Query Processing using Inverted Edge Occurrence Index 

Inverted Edge Occurrence Index:With the help of graph database file map reduce job builds 

inverted edge occurrence index. 

• Parse the graphs: Divide the graph into edges. 

• Find each edge and its graph ids and occurrences list: Each mapper sends edge and its graph id and 

edge vertex ids these vertex ids are called occurrence. Here we are using combiner to get local Graph 

ids and occurrence list of a particular Edge which is reducing the data flow in the network. No need to 

write separate class for combiner. The reducer class is used as combiner. 

The identical edges are aggregated together in the reduce function 

<Edge,GraphNo(Occurrence list)> pairs with identical Edge are aggregated together, and the  

reducer function generates the out- put file Edge index and other one is Edge Occurrence List Index. 

Algorithm1:InvertedEdgeOccurrenceIndex 

Result:EdgeOccurrenceIndex 

Data:InputgraphdatabaseD 

1ClassMapper 

2methodmap(Key:Offset,Value:Gcode(gid,graph));  

3foreachgraphGiingraphdatabaseDdo 

4foreachedgelabeledwithEdgeLabelido 

5Output(EdgeLabeli,GiandOLi) 

6end 

7end 

8ClassReducer 

9methodreduce(Key:Edge,Value:List(occurrenceslist))  

foreachedge labeledwithEdgeLabeldo 
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10 ConcatenateallgraphidstogenerateGraphSetstringGSi:Gi1 

andOLi1,Gi2andOLi2,Gi3andOLi3...GinandOLin  

emit(EdgeLabeli,ListofGSiandOLi) 

11end 

 

 

Inverted Edge Occurrence Index File Format is as follows: 

Edge - List of graph ids and its occurrences 

A B c - g1 (1,2)(3,5) , g2 (1,3)  

This assigning index is presented in Algorithm 1. 

This approach is using one map reduce round for filter and verification. In this approach Inverted 

Edge Occurrence Index is the input instead of original graph Database for verification because the 

edge occurrence positions are there in the index. The inverted Edge occurrence index is read from 

HDFS and query graph edge occurrence index is loaded into distributed cache. Mapper is reading an 

Edge from Inverted Edge occurrence list and verifying if it exists in the query edges. If it exists, 

Mapper is doing join step and send <query id and data graph id> as the key and <Edge Lable and 

edgeoccurrences> as the value. Reducer get query id and graph id as key and all its edges and edge 

occurrences as values. Reducer is doing verification. In this approach we can get false positives.  

Query Processing using Inverted Edge Occurrence Index 

This approach is using single MapReduce to do filter and verification.  Query preparation step is same 

as above approach. This approach is using inverted edge occurrence index to join the query edges and 

data graph edges. Here inverted edge occurrence index is input to the mappers. Each mapper is doing 

join step based on edges and send it to the reducer. Reducer is doing filter step and verification. Query 

preparation phase: Query preparation Step: Set of query graphs which we are going to process are 

preprocessed in this step. We prepare Inverted edge Occurrence index including occurrences list for 

both filter step and verification step, and is loaded via Distributed Cache. In this round the inverted 

edge occurrence index file is the input. Query edge index file is loaded into distributed cache. At the 

map stage the input data are partitioned into equal size blocks and each block is assigned a mapper. 

Each mapper reads block of inverted edge occurrence index. From the input each edge and its graph 

ids and occurrences are coming, if that edge is there in the query index then do join operation and 

prepare the key and value and send to the reducer. 
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Reducer: At the reducer, key is query id and data graph id and value is he list of edge and its 

occurrences in that graph. Each line of reducer is one data graph id and corresponding edges. Now get 

the edges from query, if all the edges in the query are present in the data graph then do verification 

otherwise filter the graph. Like this reducer is doing both filter and verification. 

4.3.1 Distributed Graph Query Processing using both inverted edge index and Inverted Edge 

occurrences  index 

This approach requires two MapReduce rounds. One round is used for filter and one round is used for 

verification. This approach uses both index files and it gives the result. 

Filter step is same as in the first approach Algorithm 2. Verification: During filter step, Inverted Edge 

index is used 

Algorithm2:Filter and verification using EdgeOccurrenceIndex 

Result:Finalresult:queryid-graphids 

Data:InvertedEdgeOccurrenceIndex,Indexofquerygraphsare 

loadedintoDistributedCache 

1methodSetup 

2readindexofquerygraphsfromintoqueryedgelistfromdistributed cache 

3classMapper 

4methodmap(key:offset,value:edge-gid(occurrencelist)) 

5getedgefrominputfile 

6searchinqueryedgelist 

7ifedgefoundinqueryedgelistthen 

8getgraphidslistintogidsandoccurrences; 

9getqueryidslistintoqids; 

10foreachqidinqidsdo 

11key=qid+gid; 

12value=edge+occurrencelist; 
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13emit(key,value); 

14end 

15classReducer 

16methodReduce (key:qid-gid,value:edgeoccurrencelist) 

17getqueryidanditsinformation; 

18ifsubgraphisotest(qid,gid)then 

19emit(qid,gid); 

 

and inverted edge index of query graphs is placed into distributed cache. This filter step is giving the 

candidate graphs which contain all the edges of the query graph (it is same as filter in first approach). 

So False positives are reduced. During verification, Inverted Edge Occurrences Index is the in- put 

and query edge occurrences are placed in distributed cache. In this round mapper is doing join step to 

get the edge occurrences list of the candidate datagraphs only. It is giving work to all the datanodes. It 

reduces communication cost. Even though it is using two MapReduce rounds, it is reducing the 

communication  cost  because it is sendingonly the edges in  query graph instead of all the edges in 

the data graph. The process is shown in figure 5. 

Algorithm3:VerificationusingEdgeOccurrenceIndex 

            Result:Finalresult:queryid-graphids 

 Data: InvertedEOIndexfromHDFA,filterstepresultandquery 

graphsfromDistributedCache  

1methodSetup 

2readinvertedeoindexofquerygraphsintoqueryedgelist; 

3readfilterstepresultintofilterquery; 

4classMapper 

5methodmap(key:offset,value:edge:gid(occurrencelist)) 

6getedgefromvalue 
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7searchinqueryedgelist 

8ifedgefoundinqueryedgelistthen 

9getgraphidslistintogidsandoccurrences 

10getqueryidslist intoqids 

11foreachqidinqidsdo 

12getresultgidsfromfilterquery(qid; 

13foreachgidinresultgids; 

14occurrencelist=resultgids.get(gid); 

15key=qid+gi; 

16value=edge+occurrencelist 

17emit(key,value) 

18end 

19ClassReducer 

20methodreduce(key:qid-gid,Value:edgeoccurrencelist) 

21getqid-gidanditsedgeoccurrencelist 

22getqueryidanditsinformation 

23ifsubgraphisotest(qid,gid)then 

24output(qid,gid) 

 

4.4    Index maintenance phase 

When we want to add or delete some graphs from database we need to update the inverted edge index. 

In this phase new graphs are added to the index and delete graphs are deleted from the index using 

single MapReduce round. 
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All the graphs which we want to add or delete are prepared as update inverted edge index as pre-

processing step. Each machine read the update inverted edge index from distributed cache. Index file 

is the input to the mappers. Each mapper read the contents of inverted edge index file line by line and 

verify with update inverted edge index using edge label, if it is matched then do the modification and 

send the modified copy to output file ie stored on hadoop distributed file system (HDFS). 

 

 

(a) Graphs to delete                                   (b) Graphs to insert 

Figure 4:  Graphs to insert into/delete from the Graph Database 

 

4.4.1 Incremental maintenance of inverted Edge Index and Inverted Edge Occurrence Index 

This is the third step of MRDGG. In this step we are updating the index files. We have to do the two 

steps adding or removing index in graphs is also termed as index maintenance. 

• Graphs are added to the inverted index 

• The graphs are deleted from inverted index 

• The data graph to which we want to assign index must be loaded into 

Distributed cache 

• The data graphs which we want to delete from index should be loaded into distributed cache 

• New graphs are assigned inverted edge index 

•  Assign  the  inverted  edge  index  for  the  graphs  that  are  going  to  be deleted 

• Join operation is performed based on the edge with add graph list 
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• Join operation is performed based on the edge with add graph list 

• When new graph id’s are added then the inverted index is updated. 

• After deleting the group id’s update the inverted index 

• Output the updated list to updated index file  

This type of indexing takes less time to read a particular file which contains the edge.  Simultaneously 

all machines are involving in the updating process. 

5.    OPTIMIZATION 

We discuss one optimization technique for the filter step of query processing in this section. 

5.1    Count information in the Index 

Along with graphid the count (how many times the edge present   

in this graph) is added in the index file. for the above example <A B c>g1(2),g2 If number is not 

specified after graph id means edge exists one time in that graph, otherwise the specified  no of times. 

During filter step count is used to filter the data graphs to delete and insert graphs.   

 

 

 

 

 

 

Figure 5: Edge index  
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  Table 1: Real Life Biological Datasets 

If the count in data graph is more than the count in the query graph then only it will come into result.  

This improves the performance of filtering more. The filtering rate is more.  The performance 

variation is discussed in the result section. 

6    EXPERIMENTS 

Experimental results are briefly described in this section. The performance of MRDGG on synthetic 

and real datasets was analyzed. The two indexing implementations in MapReduce are compared in 

our experiment described the existing implementations outcomes later the proposed method outcomes 

are described in detail. 

6.1    Experimental  setup 

6.1.1     Datasets 

The experiments were conducted using the dataset shown in Table 1, these collected from online 

source PubChem website.  PubChem has more than one million chemical structures.  Each graph 

contains 24.98 vertices, 26.76 edges, 4.5 distinct vertex labels, 3.0 distinct edge labels on average, and 

the total number of distinct vertex labels and distinct edge labels is 82 and 4, respectively. We 

Number of Graphs NumberofGraphs Average size of each graph 

Yeast 79599 23.5 

P388 41470 26 

SN12C 40002 31.5 

OVCAR-8 40514 31.5 

NCI-H23 40351 31.5 

MOLT-4 39763 30.5 

PC-3 27507 32 

SF-295 40269 32 

SW-620 40530 31 
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generated the synthetic dataset of size 3 lakh graphs and graph queries,  which contain various number 

of queries ie | Q | = 100, 200, 300 upto1000. 

 

6.1.2     Implementation  platform 

The implementation platform is java and Hadoop (version 1.2.1) an open source version of 

MapReduce. The data is stored in Hadoop Distributed File System(HDFS) an open source 

implementation of Google File System GFS[18]. A local cluster with 8 nodes is used to test our 

experiment. Front-end: HP Proliant DL380P Gen8  

2 x Intel Rxeon R CPU E5-2640 (2.5 GHz / 6-core/15MB / 95w) Processor Intel 7500 chip set with 

node  controller,  64  GB  RAM,  HP  SA 410i RAID controller with 1 GB Storage: HP MSA2040 

SAN SFF / 24 x 300GB HDD / 8*16GB POETS OS: Rocks Cluster 6.1.1+CentOS 6.5 Server with 

Hadoop1.2.1 Node Intel R xeon R CPU E5-264 0 (2.5 GHz / 6-core/15MB / 95w) Processor, 16GB 

RAM, 2* 300GB HDD Intel 7500 chip set with node controller. 

6.2 Experimental results 

6.2.1 Index Building Time versus Number of Data Graphs 

Multiple MapReduce indexing strategies efficiency is determined through this experiment. Figure 8 

shows how the time taken by different indexing strategies. We observe that the edge indexing is 

taking less time compared to edge-occurrence indexing. Edge occurrence indexing has to transfer 

vertex ids this increase the communication cost also compared to edge indexing. Figure 12 (b) shows 

the time taken for index creation for real data sets showed in Table 1. After adding edge count to the 

indexing strategies then it is taking more time. As number of graphs is increasing time is taking more. 

 

 

 

 

 

 

a)  Inverted Edge Index Building Time     (b) Inverted Edge OccurrenceIndex  Building Time       

Figure 8:  Index building Time for both indices 
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(a)  Comparision of Both Indexes            (b) Inverted Edge Index Time for Real Datasets 

Figure 9:  Index building Time comparision 

6.2.2     Filter time for different number of data graphs 

To find how much time is taking for query processing using different indexing strategies and for 

different number of data graphs 

 

 

 

 

 

 

(a)  Filter time using Inverted Edge Index   (b) Filter time using Inverted Edge Occurrence Index 
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(c)  Comparison of Filter time using both     (d) Comparison of Filter time using count indexes 

Figure 10:  Filter Time for Different Approaches 

. Figure 10 shows that Edge Indexing is taking less time for filtering and is not used for verification, 

so we have to depend on the original graph database. So it is taking more time. Edge Occurrence 

Index is taking some more time compared to EI, but with only one round of mapreduce is sufficient 

for both filter and verification.  

6.2.3 Query Processing Time time for Synthetic data sets 

In this  experiment  we  used  3  lakhs data graphs  and  different  number  of query  graphs.   Figure  

11  shows  that  as  no  of  query  graphs  are  increasing then time is increasing.  Sometimes if query 

graphs are not matched with data graphs then it takes less time because in the filter itself we 

eliminated false positives. 

6.2.4     Query Verification Time using EI and EI with Count 

In this experiment we conducted query processing using both EI and EI with count index.  Using EI 

with count is filtering more no of candidate graphs.  So the verification time is less compared to EI 

index. Figure 12 shows the comparison. 

 

 

 

 

 

 

 

(a)   Query   Processing   Time   for  synthetic  

data sets                            (b) Query Processing Time for Yeast data sets 

  Figure 11:  Query Processing Time vs Number of Query Graphs  
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6.2. 5   Comparison   of   EI   and EOI and Both Approaches 

In this experiment we conducted experiments using all three  approaches. EI is taking less time 

compared to the EOI. Because EI is doing filter efficiently. EOI is taking more time for both filter and 

verification steps.   If we combine both the approaches it is taking less time and less communication 

cost. 

 

 

 

 

 

 

Figure 12:  Verification Time 

 

 Figure 13 shows the comparison of three techniques.    From that we can understand third technique 

is the best. 

 

 

 

 

 

 

 

 

Figure 13: Comparison of three Approaches 

 



International Journal of Psychosocial Rehabilitation, Vol. 25, Issue 03, 2021 
ISSN: 1475-7192  
 

714 
 

7. CONCLUSIONS 

In  this  paper  we  present  multiple graph  query  processing  using  Join Technique  in  MapReduce.  

Two indexing methods are proposed and used for batch graph query processing using MapReduce.  

We show the performance of MRDGG over real life and large synthetic datasets for various number 

of query graphs. We also compare the filtering rate after optimization. In future work, we will study 

the use of graph index to mine frequent subgraphs from a large graph database. 
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